scholarly journals Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut

2020 ◽  
Author(s):  
Hui Zhi ◽  
Judith Behnsen ◽  
Allegra Aron ◽  
Vivekanandan Subramanian ◽  
Janet Z. Liu ◽  
...  

ABSTRACTZinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. Unexpectedly, the probiotic bacterium Escherichia coli Nissle 1917 exhibited appreciable growth in zinc-limited media even when these transporters were deleted. By utilizing in vitro and in vivo studies, as well as native spray metal infusion mass spectrometry and ion identity molecular networking, we discovered that Nissle utilizes yersiniabactin as a zincophore. Indeed, yersiniabactin enables Nissle to scavenge zinc in zinc-limited media, to resist calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. Moreover, we discovered that yersiniabactin’s affinity for iron or zinc changes in a pH-dependent manner, with higher affinity for zinc as the pH increased. Altogether, we demonstrate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to many commensal and pathogenic Enterobacteriaceae.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Judith Behnsen ◽  
Hui Zhi ◽  
Allegra T. Aron ◽  
Vivekanandan Subramanian ◽  
William Santus ◽  
...  

AbstractZinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or “Nissle”) exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactin’s affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1803
Author(s):  
Masao Sasai ◽  
Kazuma Sakura ◽  
Takayuki Matsuda ◽  
Hiroshi Uyama

Cisplatin (cis-diamminedichloroplatinum (II); CDDP) is a key chemotherapeutic agent but causes renal damage and other off-target effects. Here, we describe the pharmacological and biochemical characteristics of a novel formulation of CDDP complexed with γ-polyglutamic acid (γ-PGA) and chitosan (CS), γ-PGA/CDDP-CS, developed by complexing CDDP with γ-PGA, then adding CS (15 kDa; 10 mol%/γ-PGA). We analyzed tumor cytotoxicity in vitro, as well as blood kinetics, acute toxicity, and antitumor efficacy in vivo in BALB/cAJcl mice. γ-PGA/CDDP-CS showed pH-dependent release in vitro over 12 days (9.1% CDDP released at pH 7.4; 49.9% at pH 5.5). It showed in vitro cytotoxicity in a dose-dependent manner similar to that of uncomplexed CDDP. In a mesothelioma-bearing mouse model, a 15 mg/kg dose of CDDP inhibited tumor growth regardless of the type of formulation, complexed or uncomplexed; however, all mice in the uncomplexed CDDP group died within 13 days. γ-PGA/CDDP-CS was as effective as free CDDP in vivo but much less toxic.


2021 ◽  
Vol 8 (8) ◽  
pp. 116
Author(s):  
Lumei Liu ◽  
Sayali Dharmadhikari ◽  
Robert A. Pouliot ◽  
Michael M. Li ◽  
Peter M. Minneci ◽  
...  

Synthetic scaffolds for the repair of long-segment tracheal defects are hindered by insufficient biocompatibility and poor graft epithelialization. In this study, we determined if extracellular matrix (ECM) coatings improved the biocompatibility and epithelialization of synthetic tracheal grafts (syn-TG). Porcine and human ECM substrates (pECM and hECM) were created through the decellularization and lyophilization of lung tissue. Four concentrations of pECM and hECM coatings on syn-TG were characterized for their effects on scaffold morphologies and on in vitro cell viability and growth. Uncoated and ECM-coated syn-TG were subsequently evaluated in vivo through the orthotopic implantation of segmental grafts or patches. These studies demonstrated that ECM coatings were not cytotoxic and, enhanced the in vitro cell viability and growth on syn-TG in a dose-dependent manner. Mass spectrometry demonstrated that fibrillin, collagen, laminin, and nephronectin were the predominant ECM components transferred onto scaffolds. The in vivo results exhibited similar robust epithelialization of uncoated and coated syn-TG patches; however, the epithelialization remained poor with either uncoated or coated scaffolds in the segmental replacement models. Overall, these findings demonstrated that ECM coatings improve the seeded cell biocompatibility of synthetic scaffolds in vitro; however, they do not improve graft epithelialization in vivo.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Suryavathi Viswanadhapalli ◽  
Shihong Ma ◽  
Gangadhara Reddy Sareddy ◽  
Tae-Kyung Lee ◽  
Mengxing Li ◽  
...  

Abstract Background CDK4/6 inhibitors in combination with endocrine therapy (AE/AI/SERDs) are approved for the treatment of ER+ advanced breast cancer (BCa). However, not all patients benefit from CDK4/6 inhibitors therapy. We previously reported a novel therapeutic agent, ERX-11, that binds to the estrogen receptor (ER) and modulates ER-coregulator interactions. Here, we tested if the combination of ERX-11 with agents approved for ER+ BCa would be more potent. Methods We tested the effect of combination therapy using BCa cell line models, including those that have acquired resistance to tamoxifen, letrozole, or CDK4/6 inhibitors or have been engineered to express mutant forms of the ER. In vitro activity was tested using Cell Titer-Glo, MTT, and apoptosis assays. Mechanistic studies were conducted using western blot, reporter gene assays, RT-qPCR, and mass spectrometry approaches. Xenograft, patient-derived explants (PDEs), and xenograft-derived explants (XDE) were used for preclinical evaluation and toxicity. Results ERX-11 inhibited the proliferation of therapy-resistant BCa cells in a dose-dependent manner, including ribociclib resistance. The combination of ERX-11 and CDK4/6 inhibitor was synergistic in decreasing the proliferation of both endocrine therapy-sensitive and endocrine therapy-resistant BCa cells, in vitro, in xenograft models in vivo, xenograft-derived explants ex vivo, and in primary patient-derived explants ex vivo. Importantly, the combination caused xenograft tumor regression in vivo. Unbiased global mass spectrometry studies demonstrated profound decreases in proliferation markers with combination therapy and indicated global proteomic changes in E2F1, ER, and ER coregulators. Mechanistically, the combination of ERX-11 and CDK4/6 inhibitor decreased the interaction between ER and its coregulators, as evidenced by immunoprecipitation followed by mass spectrometry studies. Biochemical studies confirmed that the combination therapy significantly altered the expression of proteins involved in E2F1 and ER signaling, and this is primarily driven by a transcriptional shift, as noted in gene expression studies. Conclusions Our results suggest that ERX-11 inhibited the proliferation of BCa cells resistant to both endocrine therapy and CDK4/6 inhibitors in a dose-dependent manner and that the combination of ERX-11 with a CDK4/6 inhibitor may represent a viable therapeutic approach.


Author(s):  
Zihang Chen ◽  
Huizhi Wang ◽  
Zongpu Zhang ◽  
Jianye Xu ◽  
Yanhua Qi ◽  
...  

Abstract Background Glioma stem cells (GSCs) are considered the initial cells of gliomas, contributing to therapeutic resistance. Patient-derived GSCs well recapitulate the heterogeneity of their parent glioma tissues, which can be classified into different subtypes. Likewise, previous works identified GSCs as two distinct subtypes, mesenchymal (MES) and proneural (PN) subtypes, and with general recognition, the MES subtype is considered a more malignant phenotype characterized by high invasion and radioresistance. Therefore, understanding the mechanisms involved in the MES phenotype is necessary for glioblastoma treatment. Methods Data for bioinformatic analysis were obtained from The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) database. An antibody was used to block cell surface glucose-regulated protein 78 (csGRP78). Apoptosis and cell cycle analyses were performed to evaluate radiation damage. Immunofluorescence staining was applied to assess protein expression and distribution. Mass spectrometry combined with bioinformatic analysis was used to screen downstream molecules. Intracranial GSC-derived xenografts were established for in vivo experiments. Results Total GRP78 expression was associated with MES GSC stemness, and csGRP78 was highly expressed in MES GSCs. Targeting csGRP78 suppressed the self-renewal and radioresistance of MES GSCs in vitro and in vivo, accompanied by downregulation of the STAT3, NF-κB and C/EBPβ pathways. Mass spectrometry revealed the potential downstream β-site APP-cleaving enzyme 2 (BACE2), which was regulated by csGRP78 via lysosomal degradation. Knockdown of BACE2 inactivated NF-κB and C/EBPβ and significantly suppressed the tumorigenesis and radioresistance of MES GSCs in vitro and in vivo. Conclusions Cell surface GRP78 was preferentially expressed in MES GSCs and played a pivotal role in MES phenotype maintenance. Thus, blocking csGRP78 in MES GSCs with a high-specificity antibody might be a promising novel therapeutic strategy.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Fumiko Shinkai-Ouchi ◽  
Mayumi Shindo ◽  
Naoko Doi ◽  
Shoji Hata ◽  
Yasuko Ono

Abstract Calpain-1 and calpain-2 are highly structurally similar isoforms of calpain. The calpains, a family of intracellular cysteine proteases, cleave their substrates at specific sites, thus modifying their properties such as function or activity. These isoforms have long been considered to function in a redundant or complementary manner, as they are both ubiquitously expressed and activated in a Ca2+- dependent manner. However, studies using isoform-specific knockout and knockdown strategies revealed that each calpain species carries out specific functions in vivo. To understand the mechanisms that differentiate calpain-1 and calpain-2, we focused on the efficiency and longevity of each calpain species after activation. Using an in vitro proteolysis assay of troponin T in combination with mass spectrometry, we revealed distinctive aspects of each isoform. Proteolysis mediated by calpain-1 was more sustained, lasting as long as several hours, whereas proteolysis mediated by calpain-2 was quickly blunted. Calpain-1 and calpain-2 also differed from each other in their patterns of autolysis. Calpain-2–specific autolysis sites in its PC1 domain are not cleaved by calpain-1, but calpain-2 cuts calpain-1 at the corresponding position. Moreover, at least in vitro, calpain-1 and calpain-2 do not perform substrate proteolysis in a synergistic manner. On the contrary, calpain-1 activity is suppressed in the presence of calpain-2, possibly because it is cleaved by the latter protein. These results suggest that calpain-2 functions as a down-regulation of calpain-1, a mechanism that may be applicable to other calpain species as well.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohammad Sarowar Uddin ◽  
Md. Shalahuddin Millat ◽  
Mohammad Safiqul Islam ◽  
Md. Saddam Hussain ◽  
Md. Giash Uddin ◽  
...  

Abstract Background Brassica nigra is a plant of Brassicaceae family, which possesses numerous medicinal values. Our present study is intended to assess the potential in vitro thrombolytic, anthelminthic, cytotoxic and in vivo anxiolytic properties of MCE of B. nigra flowers. MCE was fractioned for separating the compound on the basis of polarity by using chloroform, n-hexane and ethyl acetate solvent. Thrombolytic and anthelminthic activities were explained by collecting human erythrocytes and earthworms as test models, respectively. Anxiolytic activity was evaluated by elevated plus maze and hole board models while cytotoxic test was conducted through brine shrimp lethality bioassay. Results MCE revealed the presence of alkaloids, flavonoids, tannin, diterpenes, glycosides, carbohydrates, phenols, fixed oils and fat. In case of thrombolytic test, the MCE, CSF, ASF and n-HSF had produced maximum clot lysis activity at 5 and 10 mg/ml dose conditions. Two different concentrations (10 and 20 mg/ml) of MCE and its fractions showed significant (p < 0.05) anthelminthic activities in a dose-dependent manner. Significant anxiolytic activity was observed for all fractions which was comparable to the standard drug diazepam (p < 0.05). Again, the cytotoxic screening also presented good potentials for all fractions. Conclusion From the findings of present study, we can conclude that MCE of B. nigra flowers and its fraction possess significant anxiolytic, anthelmintic, anticancer and thrombolytic properties which may be a good candidate for treating these diseases through the determination of bio-active lead compounds.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document