scholarly journals Genome-wide diversity and differentiation of two novel multidrug-resistant populations of Pasteurella multocida type B:2 from fowl cholera

2020 ◽  
Author(s):  
Otun Saha ◽  
M. Rafiul Islam ◽  
M. Shaminur Rahman ◽  
M. Nazmul Hoque ◽  
M. Anwar Hossain ◽  
...  

ABSTRACTPasteurella multocida is the etiologic agent of fowl cholera (FC), a highly contagious and severe disease in poultry with higher mortality and morbidity. Twenty-two P. multocida strains isolated from the FC outbreaks were subjected to phenotypic and genotypic characterization. The isolates were grouped into two distinct RAPD biotypes harboring a range of pathogenic genes; exbB, ompH, ptfA, nanB, sodC, and hgbA. Among these strains, 90.90% and 36.37% were multidrug-resistant and strong biofilm formers, respectively. Whole genome sequencing of the two representative RAPD isolates confirmed as P. multocida type B:L2:ST122 harboring a number of virulence factors, and antimicrobial resistance genes. Pan-genome analysis revealed 90 unique genes in these genomes associated with versatile metabolic functions, pathogenicity, virulence, and antimicrobial resistance. This study for the first time reports the association of P. multocida genotype B:L2:ST122 in the pathogenesis of FC, and provides a genetic context for future researches on P. multocida strains.

2021 ◽  
pp. 2527-2542
Author(s):  
Otun Saha ◽  
M. Rafiul Islam ◽  
M. Shaminur Rahman ◽  
M. Nazmul Hoque ◽  
M. Anwar Hossain ◽  
...  

Background and Aim: Fowl cholera (FC) caused by Pasteurella multocida is a highly contagious bacterial disease of global importance for poultry production. The severity and incidence of FC caused by P. multocida may vary considerably depending on several factors associated with the host (including species and age of infected birds), the environment, and the bacterial strain. This study aimed to investigate the genetic diversity of multidrug-resistant P. multocida strains isolated from FC outbreaks in laying hens from commercial farms of Bangladesh. Materials and Methods: We collected 57 samples of suspected FC, including 36 live and 21 dead laying hens. P. multocida isolates were characterized by biochemical and molecular-biological methods. Results: Twenty-two strains of P. multocida were isolated from these samples through phenotypic and genotypic characterization. The strains were grouped into two distinct random amplification of polymorphic DNA (RAPD) biotypes harboring a range of pathogenic genes; exbB, ompH, ptfA, nanB, sodC, and hgbA. In this study, 90.90% and 81.82% P. multocida strains were multidrug-resistant and biofilm formers, respectively. Whole-genome sequencing of the two representative RAPD phylotypes confirmed as P. multocida type B: L2:ST122, harboring a number of virulence factors-associated genes (VFGs), and antimicrobial resistance (AMR) genes (ARGs). In addition, pan-genome analysis revealed 90 unique genes in the genomes of P. multocida predicted to be associated with versatile metabolic functions, pathogenicity, virulence, and AMR. Conclusion: This is first-ever report on the association of P. multocida genotype B: L2:ST122 and related VFGs and ARGs in the pathogenesis of FC in laying hens. This study also provides a genetic context for future researches on the evolutionary diversity of P. multocida strains and their host adaptation.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


Author(s):  
Ping Li ◽  
Li Zhan ◽  
Henghui Wang ◽  
Wenjie Gao ◽  
Lei Gao ◽  
...  

Salmonella , a major foodborne pathogen, causes severe gastrointestinal disease in people and animals worldwide. Plasmid-borne mcr-1 , which confers colistin resistance in Salmonella, has significant epidemiological interest for public health safety. Here, we report the first evidence of mcr-1 -mediated colistin resistance in one multidrug-resistant strain,namely 16062 in this study, from 355 Salmonella isolates collected for Jiaxing foodborne pathogen monitoring in Zhejiang Province in 2015–2019. In addition to colistin, 16062 displayed multidrug resistance to various antimicrobials (β-lactams, quinolone, sulfonamide, florfenicol, ampicillin, streptomycin, nalidixic acid, aminoglycoside, and trimethoprim-sulfamethox). The mcr-1 -carrying IncX4 plasmid (p16062-MCR) in this study shares a conserved structure with other mcr -IncX4 plasmids. We found that other antimicrobial-resistance genes ( aac(6')-Ib-cr , aadA1 , aadA2 , aph(3')-Ia , oqxA , oqxB , sul1 , and cmlA1 ) are located on p16062-cmlA, an atypical IncHI2 plasmid, in isolate 16062. This is the first identification of transferable colistin resistance in foodborne Salmonella isolate collected in Jiaxing city, the 5-year monitoring of which revealed limited dissemination. By determining the genetic features of the plasmid vehicle, the characteristics of transferable mcr genes circulating in isolates from Jiaxing are now clearer.


2017 ◽  
Vol 80 (5) ◽  
pp. 734-739 ◽  
Author(s):  
Yung-Tsun Lo ◽  
Chia-Lan Wang ◽  
Bai-Hsung Chen ◽  
Chung-Wen Hu ◽  
Chung-Hsi Chou

ABSTRACT We tested 137 samples of domestic shucked oysters and 114 samples of imported oysters collected from traditional retail markets and supermarkets during 2010 and 2011 in Taiwan for the presence of Salmonella. We obtained a total of 91 Salmonella isolates, representing nine serotypes, from 80 of the domestic samples. We did not find any Salmonella in the imported oysters. The presence of Salmonella contamination tended to be specific to the area from which the oysters were harvested: the Dongshih area had a significantly higher contamination rate (68.8%) than the Budai (20.0%) and Wanggong (9.1%) areas. In addition, the rate of Salmonella contamination was higher in oysters that were packed or sold with water (P < 0.05). The most commonly identified Salmonella serotypes were Saintpaul (26.4%), Newport (22.0%), and Infantis (13.2%). We screened the isolates for susceptibility to nine antimicrobials and compared them genetically by using PCR for the class 1 integron (int1), tetA, tetB, and blaPSE-1 genes. Eighteen isolates (19.8%) were resistant to at least one antimicrobial agent, and the most frequent resistances were those to tetracycline and oxytetracycline (n = 12, 14.3%).We detected the antimicrobial resistance genes int1, tetA, tetB, and blaPSE-1 in 16.5, 26.4, 6.6, and 22.0% of the isolates, respectively. Eleven of the 18 antimicrobial-resistant isolates contained one or two int1 cassettes, suggesting that the presence of int1 is highly correlated with antimicrobial resistance in Salmonella isolates from oysters. The consumption of oysters is increasing in Taiwan, and information related to Salmonella contamination in oysters is rather limited. Our results indicate that raw oyster consumption from retail markets in Taiwan is associated with a human health hazard owing to Salmonella, including multidrug-resistant Salmonella strains.


2020 ◽  
Vol 8 (7) ◽  
pp. 1055
Author(s):  
Carmen Li ◽  
Dulmini Nanayakkara Sapugahawatte ◽  
Ying Yang ◽  
Kam Tak Wong ◽  
Norman Wai Sing Lo ◽  
...  

Penicillin non-susceptible Streptococcus agalactiae (PEN-NS GBS) has been increasingly reported, with multidrug-resistant (MDR) GBS documented in Japan. Here we identified two PEN-NS GBS strains during our surveillance studies: one from a patient’s wound and the other from a tilapia. The patient’s GBS (H21) and fish GBS (F49) were serotyped and tested for antibiotic susceptibility. Whole-genome sequencing was performed to find the sequence type, antimicrobial resistance genes, and mutations in penicillin-binding proteins (PBPs) and fluoroquinolone (FQ) resistance genes. H21 and F49 belonged to ST651, serotype Ib, and ST7, serotype Ia, respectively. H21 showed PEN and cefotaxime minimum inhibitory concentrations (MICs) of 2.0 mg/L. F49 showed PEN MIC 0.5 mg/L. H21 was MDR with ermB, lnuB, tetS, ant6-Ia, sat4a, and aph3-III antimicrobial resistance genes observed. Alignment of PBPs showed the combination of PBP1B (A95D) and 2B mutations (V80A, S147A, S160A) in H21 and a novel mutation in F49 at N192S in PBP2B. Alignment of FQ-resistant determinants revealed mutation sites on gyrA, gyrB, and parC and E in H21. To our knowledge, this is the first report of GBS isolates with such high penicillin and cefotaxime MICs. This raises the concern of emergence of MDR and PEN-NS GBS in and beyond healthcare facilities.


2018 ◽  
Vol 6 (4) ◽  
pp. 117 ◽  
Author(s):  
Jin-Hui Su ◽  
Yao-Hong Zhu ◽  
Tian-Yi Ren ◽  
Liang Guo ◽  
Gui-Yan Yang ◽  
...  

Salmonella can cause enteric diseases in humans and a wide range of animals, and even outbreaks of foodborne illness. The aim of this study was to investigate the frequency and distribution of serovars, and antimicrobial resistance in Salmonella isolates from pigs with diarrhea in 26 provinces in China from 2014 to 2016. A total of 104 Salmonella isolates were identified and the dominant serovar was S. 4,[5],12:i:- (53.9%). All Salmonella isolates were resistant to trimethoprim-sulfamethoxazole, and many were resistant to ampicillin (80.8%) and tetracycline (76.9%). Among 104 Salmonella isolates, aac(6′)-Ib-cr was the dominant plasmid-mediated quinolone resistance gene (80.8%), followed by qnrS (47.1%). The pulsed-field gel electrophoresis results suggest that the Salmonella isolates from different regions were genetically diverse, and ST34 was the most prevalent. S. 4,[5],12:i:- isolates is the widespread presence of heavy metal tolerance genes. The fact that the same sequence types were found in different regions and the high similarity coefficient of S. 4,[5],12:i:- isolates from different regions indicate the clonal expansion of the isolates, and the isolates carried various antimicrobial resistance genes. The multidrug resistant Salmonella can be widely detected in pigs, which will present a challenge for farm husbandry.


Sign in / Sign up

Export Citation Format

Share Document