scholarly journals Structural control of fibrin bioactivity by mechanical deformation

2020 ◽  
Author(s):  
Sachin Kumar ◽  
Yujen Wang ◽  
Manuel K. Rausch ◽  
Sapun H. Parekh

AbstractFibrin is a fibrous protein network that entraps blood cells and platelets to form blood clots following vascular injury. As a biomaterial, fibrin acts a biochemical scaffold as well as a viscoelastic patch that resists mechanical insults. The biomechanics and biochemistry of fibrin have been well characterized independently, showing that fibrin is a hierarchical material with numerous binding partners. However, comparatively little is known about how fibrin biomechanics and biochemistry are coupled: how does fibrin deformation influence its biochemistry at the molecular level? In this study, we show how mechanically-induced molecular structural changes in fibrin affect fibrin biochemistry and fibrin-platelet interaction. We found that tensile deformation of fibrin lead to molecular structural transitions of α-helices to β-sheets, which reduced binding of tissue plasminogen activator (tPA), an enzyme that initiates fibrinolysis, at the network and single fiber level. Moreover, binding of tPA and Thioflavin T (ThT), a commonly used β-sheet marker, was primarily mutually exclusive such that tPA bound to native (helical) fibrin whereas ThT bound to strained fibrin. Finally, we demonstrate that conformational changes in fibrin suppressed the biological activity of platelets on mechanically strained fibrin due to attenuated αIIbβ3 integrin binding. Our work shows that mechanical strain regulates fibrin molecular structure and fibrin biological activity in an elegant mechano-chemical feedback loop, which likely influences fibrinolysis and wound healing kinetics.

Author(s):  
M. Boublik ◽  
V. Mandiyan ◽  
J.F. Hainfeld ◽  
J.S. Wall

The aim of this study is to understand the mechanism of 16S rRNA folding into the compact structure of the small 30S subunit of E. coli ribosome. The assembly of the 30S E. coli ribosomal subunit is a sequence of specific interactions of 16S rRNA with 21 ribosomal proteins (S1-S21). Using dedicated high resolution STEM we have monitored structural changes induced in 16S rRNA by the proteins S4, S8, S15 and S20 which are involved in the initial steps of 30S subunit assembly. S4 is the first protein to bind directly and stoichiometrically to 16S rRNA. Direct binding also occurs individually between 16S RNA and S8 and S15. However, binding of S20 requires the presence of S4 and S8. The RNA-protein complexes are prepared by the standard reconstitution procedure, dialyzed against 60 mM KCl, 2 mM Mg(OAc)2, 10 mM-Hepes-KOH pH 7.5 (Buffer A), freeze-dried and observed unstained in dark field at -160°.


2020 ◽  
Author(s):  
Viraj kirinda ◽  
Scott Hartley

The self-assembly of foldamers into macrocycles is a simple approach to non-biological higher-order structure. Previous work on the co-assembly of ortho-phenylene foldamers with rod-shaped linkers has shown that folding and self-assembly affect each other; that is, the combination leads to new emergent behavior, such as access to otherwise unfavorable folding states. To this point this relationship has been passive. Here, we demonstrate control of self-assembly by manipulating the foldamers’ conformational energy surfaces. A series of o-phenylene decamers and octamers have been assembled into macrocycles using imine condensation. Product distributions were analyzed by gel-permeation chromatography and molecular geometries extracted from a combination of NMR spectroscopy and computational chemistry. The assembly of o-phenylene decamers functionalized with alkoxy groups or hydrogens gives both [2+2] and [3+3] macrocycles. The mixture results from a subtle balance of entropic and enthalpic effects in these systems: the smaller [2+2] macrocycles are entropically favored but require the oligomer to misfold, whereas a perfectly folded decamer fits well within the larger [3+3] macrocycle that is entropically disfavored. Changing the substituents to fluoro groups, however, shifts assembly quantitatively to the [3+3] macrocycle products, even though the structural changes are well-removed from the functional groups directly participating in bond formation. The electron-withdrawing groups favor folding in these systems by strengthening arene–arene stacking interactions, increasing the enthalpic penalty to misfolding. The architectural changes are substantial even though the chemical perturbation is small: analogous o-phenylene octamers do not fit within macrocycles when perfectly folded, and quantitatively misfold to give small macrocycles regardless of substitution. Taken together, these results represent both a high level of structural control in structurally complex foldamer systems and the demonstration of large-amplitude structural changes as a consequence of a small structural effects.


2020 ◽  
Vol 27 (3) ◽  
pp. 201-209
Author(s):  
Syed Saqib Ali ◽  
Mohammad Khalid Zia ◽  
Tooba Siddiqui ◽  
Haseeb Ahsan ◽  
Fahim Halim Khan

Background: Ascorbic acid is a classic dietary antioxidant which plays an important role in the body of human beings. It is commonly found in various foods as well as taken as dietary supplement. Objective: The plasma ascorbic acid concentration may range from low, as in chronic or acute oxidative stress to high if delivered intravenously during cancer treatment. Sheep alpha-2- macroglobulin (α2M), a human α2M homologue is a large tetrameric glycoprotein of 630 kDa with antiproteinase activity, found in sheep’s blood. Methods: In the present study, the interaction of ascorbic acid with alpha-2-macroglobulin was explored in the presence of visible light by utilizing various spectroscopic techniques and isothermal titration calorimetry (ITC). Results: UV-vis and fluorescence spectroscopy suggests the formation of a complex between ascorbic acid and α2M apparent by increased absorbance and decreased fluorescence. Secondary structural changes in the α2M were investigated by CD and FT-IR spectroscopy. Our findings suggest the induction of subtle conformational changes in α2M induced by ascorbic acid. Thermodynamics signatures of ascorbic acid and α2M interaction indicate that the binding is an enthalpy-driven process. Conclusion: It is possible that ascorbic acid binds and compromises antiproteinase activity of α2M by inducing changes in the secondary structure of the protein.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Ana M. Herrero ◽  
Claudia Ruiz-Capillas

Considerable attention has been paid to emulsion gels (EGs) in recent years due to their interesting applications in food. The aim of this work is to shed light on the role played by chia oil in the technological and structural properties of EGs made from soy protein isolates (SPI) and alginate. Two systems were studied: oil-free SPI gels (SPI/G) and the corresponding SPI EGs (SPI/EG) that contain chia oil. The proximate composition, technological properties (syneresis, pH, color and texture) and structural properties using Raman spectroscopy were determined for SPI/G and SPI/EG. No noticeable (p > 0.05) syneresis was observed in either sample. The pH values were similar (p > 0.05) for SPI/G and SPI/EG, but their texture and color differed significantly depending on the presence of chia oil. SPI/EG featured significantly lower redness and more lightness and yellowness and exhibited greater puncture and gel strengths than SPI/G. Raman spectroscopy revealed significant changes in the protein secondary structure, i.e., higher (p < 0.05) α-helix and lower (p < 0.05) β-sheet, turn and unordered structures, after the incorporation of chia oil to form the corresponding SPI/EG. Apparently, there is a correlation between these structural changes and the textural modifications observed.


1994 ◽  
Vol 48 (10) ◽  
pp. 1196-1203 ◽  
Author(s):  
Fazale R. Rana ◽  
Suci Widayati ◽  
Brian W. Gregory ◽  
Richard A. Dluhy

The rate at which a monomolecular film is deposited onto a solid substrate in the Langmuir-Blodgett process of preparing supported monolayer films influences the final structure of the transferred film. Attenuated total reflectance infrared spectroscopic studies of monolayers transferred to germanium substrates show that the speed at which the substrate is drawn through the air/water interface influences the final conformation in the hydrocarbon chains of amphiphilic film molecules. This transfer-induced effect is especially evident when the monolayer is transferred from the expanded region of surface-pressure-molecular-area isotherms at low surface pressures; the effect is minimized when the film molecules are transferred from condensed phases at high surface pressures. This phenomenon has been observed for both a fatty acid and a phospholipid, which suggests that these conformational changes may occur in a variety of hydrocarbon amphiphiles transferred from the air/water interface. This conformational ordering may be due to a kinetically limited phase transition taking place in the meniscus formed between the solid substrate and aqueous subphase. In addition, the results obtained for both the phospholipid and fatty acid suggest that the structure of the amphiphile may help determine the extent and nature of the transfer-speed-induced structural changes taking place in the monomolecular film.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1155-1159 ◽  
Author(s):  
Jian-Ping Xiong ◽  
Thilo Stehle ◽  
Simon L. Goodman ◽  
M. Amin Arnaout

Abstract Integrins are cell adhesion receptors that communicate biochemical and mechanical signals in a bidirectional manner across the plasma membrane and thus influence most cellular functions. Intracellular signals switch integrins into a ligand-competent state as a result of elicited conformational changes in the integrin ectodomain. Binding of extracellular ligands induces, in turn, structural changes that convey distinct signals to the cell interior. The structural basis of this bidirectional signaling has been the focus of intensive study for the past 3 decades. In this perspective, we develop a new hypothesis for integrin activation based on recent crystallographic, electron microscopic, and biochemical studies.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Giovanni Cardone ◽  
Robert L. Duda ◽  
Naiqian Cheng ◽  
Lili You ◽  
James F. Conway ◽  
...  

ABSTRACT As they mature, many capsids undergo massive conformational changes that transform their stability, reactivity, and capacity for DNA. In some cases, maturation proceeds via one or more intermediate states. These structures represent local minima in a rich energy landscape that combines contributions from subunit folding, association of subunits into capsomers, and intercapsomer interactions. We have used scanning calorimetry and cryo-electron microscopy to explore the range of capsid conformations accessible to bacteriophage HK97. To separate conformational effects from those associated with covalent cross-linking (a stabilization mechanism of HK97), a cross-link-incompetent mutant was used. The mature capsid Head I undergoes an endothermic phase transition at 60°C in which it shrinks by 7%, primarily through changes in its hexamer conformation. The transition is reversible, with a half-life of ~3 min; however, >50% of reverted capsids are severely distorted or ruptured. This observation implies that such damage is a potential hazard of large-scale structural changes such as those involved in maturation. Assuming that the risk is lower for smaller changes, this suggests a rationalization for the existence of metastable intermediates: that they serve as stepping stones that preserve capsid integrity as it switches between the radically different conformations of its precursor and mature states. IMPORTANCE Large-scale conformational changes are widespread in virus maturation and infection processes. These changes are accompanied by the release of conformational free energy as the virion (or fusogenic glycoprotein) switches from a precursor state to its mature state. Each state corresponds to a local minimum in an energy landscape. The conformational changes in capsid maturation are so radical that the question arises of how maturing capsids avoid being torn apart. Offering proof of principle, severe damage is inflicted when a bacteriophage HK97 capsid reverts from the (nonphysiological) state that it enters when heated past 60°C. We suggest that capsid proteins have been selected in part by the criterion of being able to avoid sustaining collateral damage as they mature. One way of achieving this—as with the HK97 capsid—involves breaking the overall transition down into several smaller steps in which the risk of damage is reduced.


2021 ◽  
Vol 22 (6) ◽  
pp. 2937
Author(s):  
Monika Halat ◽  
Magdalena Klimek-Chodacka ◽  
Jagoda Orleanska ◽  
Malgorzata Baranska ◽  
Rafal Baranski

The Streptococcus pyogenes Cas9 protein (SpCas9), a component of CRISPR-based immune system in microbes, has become commonly utilized for genome editing. This nuclease forms a ribonucleoprotein (RNP) complex with guide RNA (gRNA) which induces Cas9 structural changes and triggers its cleavage activity. Here, electronic circular dichroism (ECD) spectroscopy was used to confirm the RNP formation and to determine its individual components. The ECD spectra had characteristic features differentiating Cas9 and gRNA, the former showed a negative/positive profile with maxima located at 221, 209 and 196 nm, while the latter revealed positive/negative/positive/negative pattern with bands observed at 266, 242, 222 and 209 nm, respectively. For the first time, the experimental ECD spectrum of the gRNA:Cas9 RNP complex is presented. It exhibits a bisignate positive/negative ECD couplet with maxima at 273 and 235 nm, and it differs significantly from individual spectrum of each RNP components. Additionally, the Cas9 protein and RNP complex retained biological activity after ECD measurements and they were able to bind and cleave DNA in vitro. Hence, we conclude that ECD spectroscopy can be considered as a quick and non-destructive method of monitoring conformational changes of the Cas9 protein as a result of Cas9 and gRNA interaction, and identification of the gRNA:Cas9 RNP complex.


2004 ◽  
Vol 78 (6) ◽  
pp. 2994-3002 ◽  
Author(s):  
Anne Op De Beeck ◽  
Cécile Voisset ◽  
Birke Bartosch ◽  
Yann Ciczora ◽  
Laurence Cocquerel ◽  
...  

ABSTRACT Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion.


2014 ◽  
Vol 112 (07) ◽  
pp. 53-64 ◽  
Author(s):  
Sven Brandt ◽  
Krystin Krauel ◽  
Kay E. Gottschalk ◽  
Thomas Renné ◽  
Christiane A. Helm ◽  
...  

SummaryHeparin-induced thrombocytopenia (HIT) is the most frequent drug-induced immune reaction affecting blood cells. Its antigen is formed when the chemokine platelet factor 4 (PF4) complexes with polyanions. By assessing polyanions of varying length and degree of sulfation using immunoassay and circular dichroism (CD)-spectroscopy, we show that PF4 structural changes resulting in antiparallel β-sheet content >30% make PF4/polyanion complexes antigenic. Further, we found that polyphosphates (polyP-55) induce antigenic changes on PF4, whereas fondaparinux does not. We provide a model suggesting that conformational changes exposing antigens on PF4/polyanion complexes occur in the hairpin involving AA 32–38, which form together with C-terminal AA (66–70) of the adjacent PF4 monomer a continuous patch on the PF4 tetramer surface, explaining why only tetrameric PF4 molecules express “HIT antigens”. The correlation of antibody binding in immunoassays with PF4 structural changes provides the intriguing possibility that CD-spectroscopy could become the first antibody-independent, in vitro method to predict potential immunogenicity of drugs. CD-spectroscopy could identify compounds during preclinical drug development that induce PF4 structural changes correlated with antigenicity. The clinical relevance can then be specifically addressed during clinical trials. Whether these findings can be transferred to other endogenous proteins requires further studies.


Sign in / Sign up

Export Citation Format

Share Document