scholarly journals Human T-bet governs innate and innate-like adaptive IFN-γ immunity against mycobacteria

Author(s):  
Rui Yang ◽  
Federico Mele ◽  
Lisa Worley ◽  
David Langlais ◽  
Jérémie Rosain ◽  
...  

SummaryInborn errors of human IFN-γ immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to an inherited deficiency of the transcription factor T-bet. This deficiency abolishes the expression of T-bet target genes, including IFNG, by altering chromatin accessibility and DNA methylation in CD4+ T cells. The patient has profoundly diminished counts of mycobacterial-reactive circulating NK, invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of non-mycobacterial-reactive classic TH1 lymphocytes, the remainders of which also produce abnormally low amounts of IFN-γ. Other IFN-γ-producing lymphocyte subsets however develop normally, but with low levels of IFN-γ production, with exception of Vδ2− γδ T lymphocytes, which produce normal amounts of IFN-γ in response to non-mycobacterial stimulation, and non-classic TH1 (TH1*) lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of, and IFN-γ production by, innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells), with mycobacterial-specific, IFN-γ-producing, purely adaptive αβ TH1* cells unable to compensate for this deficit.

1998 ◽  
Vol 66 (5) ◽  
pp. 1855-1860 ◽  
Author(s):  
Duncan M. Mwangi ◽  
Suman M. Mahan ◽  
John K. Nyanjui ◽  
Evans L. N. Taracha ◽  
Declan J. McKeever

ABSTRACT Peripheral blood mononuclear cells (PBMC) from immune cattle proliferate in the presence of autologous Cowdria ruminantium-infected endothelial cells and monocytes. Endothelial cells required treatment with T-cell growth factors to induce class II major histocompatibility complex expression prior to infection and use as stimulators. Proliferative responses to both infected autologous endothelial cells and monocytes were characterized by expansion of a mixture of CD4+, CD8+, and γδ T cells. However, γδ T cells dominated following several restimulations. Reverse transcription-PCR analysis of cytokine expression by C. ruminantium-specific T-cell lines and immune PBMC revealed weak interleukin-2 (IL-2), IL-4, and gamma interferon (IFN-γ) transcripts at 3 to 24 h after stimulation. Strong expression of IFN-γ, tumor necrosis factor alpha (TNF-α), TNF-β, and IL-2 receptor α-chain mRNA was detected in T-cell lines 48 h after antigen stimulation. Supernatants from these T-cell cultures contained IFN-γ protein. Our findings suggest that in immune cattle a C. ruminantium-specific T-cell response is induced and that infected endothelial cells and monocytes may present C. ruminantiumantigens to specific T lymphocytes in vivo during infection and thereby play a role in induction of protective immune responses to the pathogen.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2428
Author(s):  
Frank Liang ◽  
Azar Rezapour ◽  
Peter Falk ◽  
Eva Angenete ◽  
Ulf Yrlid

TILs comprise functionally distinct conventional and unconventional T cell subsets and their role in responses to CRC treatments is poorly understood. We explored recovery of viable TILs from cryopreserved tumor biopsies of (chemo)-radiated patients with rectal cancer to establish a platform for retrospective TIL analyses of frozen tumors from pre-selected study cohorts. Frequencies of TIL subsets and their capacity to mount IFN-γ responses in cell suspensions of fresh vs. cryopreserved portions of the same tumor biopsies were determined for platform validation. The percentages and proportions of CD4+ TILs and CD8+ cytotoxic T lymphocytes (CTLs) among total TILs were not affected by cryopreservation. While recovery of unconventional γδ T cells and mucosal-associated invariant T cells (MAIT cells) was stable after cryopreservation, the regulatory T cells (Tregs) were reduced, but in sufficient yields for quantification. IFN-γ production by in vitro-stimulated CD4+ TILs, CTLs, γδ T cells, and MAIT cells were proportionally similar in fresh and cryopreserved tumor portions, albeit the latter displayed lower levels. Thus, the proposed platform intended for TIL analyses on cryopreserved tumor biobank biopsies holds promises for studies linking the quantity and quality of TIL subsets with specific clinical outcome after CRC treatment.


2004 ◽  
Vol 72 (3) ◽  
pp. 1530-1536 ◽  
Author(s):  
Edna I. Gergel ◽  
Martha B. Furie

ABSTRACT Some diseases are characterized by prevalence in the affected tissues of type 1 T lymphocytes, which secrete gamma interferon (IFN-γ) and other proinflammatory cytokines. For example, type 1 T cells predominate in the lesions of patients with Lyme disease, which is caused by the bacterium Borrelia burgdorferi. We used an in vitro model of the blood vessel wall to test the premise that the vascular endothelium actively recruits circulating type 1 T cells to such lesions. When T lymphocytes isolated from human peripheral blood were examined, the populations that traversed monolayers of resting human umbilical vein endothelial cells (HUVEC) or HUVEC stimulated by interleukin-1β or B. burgdorferi were markedly enriched for T cells that produced IFN-γ compared to the initially added population of T cells. No enrichment was seen for cells that produced interleukin-4, a marker for type 2 T lymphocytes. Very late antigen-4 and CD11/CD18 integrins mediated passage of the T cells across both resting and stimulated HUVEC, and the endothelium-derived chemokine CCL2 (monocyte chemoattractant protein 1) was responsible for the enhanced migration of T cells across stimulated HUVEC. These results suggest that the vascular endothelium may contribute to the selective accumulation of type 1 T cells in certain pathological lesions, including those of Lyme disease.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4422-4431 ◽  
Author(s):  
Georg Gruenbacher ◽  
Hubert Gander ◽  
Andrea Rahm ◽  
Walter Nussbaumer ◽  
Nikolaus Romani ◽  
...  

Abstract CD56+ human dendritic cells (DCs) have recently been shown to differentiate from monocytes in response to GM-CSF and type 1 interferon in vitro. We show here that CD56+ cells freshly isolated from human peripheral blood contain a substantial subset of CD14+CD86+HLA-DR+ cells, which have the appearance of intermediate-sized lymphocytes but spontaneously differentiate into enlarged DC-like cells with substantially increased HLA-DR and CD86 expression or into fully mature CD83+ DCs in response to appropriate cytokines. Stimulation of CD56+ cells containing both DCs and abundant γδ T cells with zoledronate and interleukin-2 (IL-2) resulted in the rapid expansion of γδ T cells as well as in IFN-γ, TNF-α, and IL-1β but not in IL-4, IL-10, or IL-17 production. IFN-γ, TNF-α, and IL-1β production were almost completely abolished by depleting CD14+ cells from the CD56+ subset before stimulation. Likewise, depletion of CD14+ cells dramatically impaired γδ T-cell expansion. IFN-γ production could also be blocked by neutralizing the effects of endogenous IL-1β and TNF-α. Conversely, addition of recombinant IL-1β, TNF-α, or both further enhanced IFN-γ production and strongly up-regulated IL-6 production. Our data indicate that CD56+ DCs from human blood are capable of stimulating CD56+ γδ T cells, which may be harnessed for immunotherapy.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Jennifer H. Wilson-Welder ◽  
David P. Alt ◽  
Jarlath E. Nally ◽  
Steven C. Olsen

ABSTRACT This study examined the humoral and cellular response of cattle vaccinated with two commercial leptospiral vaccines, Leptavoid and Spirovac, and a novel bacterin vaccine using Seppic Montanide oil emulsion adjuvant. Vaccination was followed by experimental challenge. All vaccinated cattle were protected from colonization of the kidney and shedding of Leptospira in urine, as detected by culture and immunofluorescence assay. Agglutinating antibody titers were detected in vaccinated cattle at 4 weeks following vaccination, with small anamnestic response detected following experimental challenge. Only animals vaccinated with the oil emulsion-adjuvanted bacterin produced significant IgG2 titers following vaccination, and nonvaccinated animals produced serum IgA titers after experimental challenge. CD4+ and γδ T cells from vaccinated cattle proliferated when cultured with antigen ex vivo. Cellular responses included a marked proliferation of γδ T cells immediately following experimental challenge in vaccinated cattle and release of gamma interferon (IFN-γ), interleukin 17a (IL-17a), and IL-12p40 from stimulated cells. Proliferative and cytokine responses were found not just in peripheral mononuclear cells but also in lymphocytes isolated from renal lymph nodes at 10 weeks following experimental challenge. Overall, effects of leptospirosis vaccination and infection were subtle, resulting in only modest activation of CD4+ and γδ T cells. The use of Seppic Montanide oil emulsion adjuvants may shorten the initiation of response to vaccination, which could be useful during outbreaks or in areas where leptospirosis is endemic. IMPORTANCE Leptospirosis is an underdiagnosed, underreported zoonotic disease of which domestic livestock can be carriers. As a reservoir host for Leptospira borgpetersenii serovar Hardjo, cattle may present with reproductive issues, including abortion, birth of weak or infected calves, or failure to breed. Despite years of study and the availability of commercial vaccines, detailed analysis of the bovine immune response to vaccination and Leptospira challenge is lacking. This study evaluated immunologic responses to two efficacious commercial vaccines and a novel bacterin vaccine using an adjuvant chosen for enhanced cellular immune responses. Antigen-specific responsive CD4 and γδ T cells were detected following vaccination and were associated with release of inflammatory cytokines IFN-γ and IL-17a after stimulation. CD4 and γδ cells increased in the first week after infection and, combined with serum antibody, may play a role in clearance of bacteria from the blood and resident tissues. Additionally, these antigen-reactive T cells were found in the regional lymph nodes following infection, indicating that memory responses may not be circulating but are still present in regional lymph nodes. The information gained in this study expands knowledge of bovine immune response to leptospirosis vaccines and infection. The use of oil emulsion adjuvants may enhance early immune responses to leptospiral bacterins, which could be useful in outbreaks or situations where leptospirosis is endemic.


2011 ◽  
Vol 4 (4) ◽  
pp. 211
Author(s):  
Serena Meraviglia ◽  
Carmela La Mendola ◽  
Valentina Orlando ◽  
Francesco Scarpa ◽  
Giuseppe Cicero ◽  
...  

The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.<br />


2017 ◽  
Vol 85 (7) ◽  
Author(s):  
Chiara Ripamonti ◽  
Lisa R. Bishop ◽  
Joseph A. Kovacs

ABSTRACT Pneumocystis remains an important pathogen of immunosuppressed patients, causing a potentially life-threatening pneumonia. Despite its medical importance, the immune responses required to control infection, including the role of interleukin-17 (IL-17), which is important in controlling other fungal infections, have not been clearly defined. Using flow cytometry and intracellular cytokine staining after stimulation with phorbol myristate acetate and ionomycin, we examined gamma interferon (IFN-γ), IL-4, IL-5, and IL-17 production by lung lymphocytes in immunocompetent C57BL/6 mice over time following infection with Pneumocystis murina. We also examined the clearance of Pneumocystis infection in IL-17A-deficient mice. The production of both IFN-γ and IL-17 by pulmonary lymphocytes increased during infection, with maximum production at approximately days 35 to 40, coinciding with peak Pneumocystis levels in the lungs, while minimal changes were seen in IL-4- and IL-5-positive cells. The proportion of cells producing IFN-γ was consistently higher than for cells producing IL-17, with peak levels of ∼25 to 30% of CD3+ T cells for the former compared to ∼15% for the latter. Both CD4+ T cells and γδ T cells produced IL-17. Administration of anti-IFN-γ antibody led to a decrease in IFN-γ-positive cells, and an increase in IL-5-positive cells, but did not impact clearance of Pneumocystis infection. Despite the increases in IL-17 production during infection, IL-17A-deficient mice cleared Pneumocystis infection with kinetics similar to C57BL/6 mice. Thus, while IL-17 production in the lungs is increased during Pneumocystis infection in immunocompetent mice, IL-17A is not required for control of Pneumocystis infection.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4615-4621 ◽  
Author(s):  
Nicola Giuliani ◽  
Simona Colla ◽  
Roberto Sala ◽  
Matteo Moroni ◽  
Mirca Lazzaretti ◽  
...  

The biologic mechanisms involved in the pathogenesis of multiple myeloma (MM) bone disease are not completely understood. Recent evidence suggests that T cells may regulate bone resorption through the cross-talk between the critical osteoclastogenetic factor, receptor activator of nuclear factor-κB ligand (RANKL), and interferon γ (IFN-γ) that strongly suppresses osteoclastogenesis. Using a coculture transwell system we found that human myeloma cell lines (HMCLs) increased the expression and secretion of RANKL in activated T lymphocytes and similarly purified MM cells stimulated RANKL production in autologous T lymphocytes. In addition, either anti–interleukin 6 (anti–IL-6) or anti–IL-7 antibody inhibited HMCL-induced RANKL overexpression. Consistently, we demonstrated that HMCLs and fresh MM cells express IL-7 mRNA and secrete IL-7 in the presence of IL-6 and that bone marrow (BM) IL-7 levels were significantly higher in patients with MM. Moreover, we found that the release of IFN-γ by T lymphocytes was reduced in presence of both HMCLs and purified MM cells. Furthermore, in a stromal cell–free system, osteoclastogenesis was stimulated by conditioned medium of T cells cocultured with HMCLs and inhibited by recombinant human osteoprotegerin (OPG; 100 ng/mL to 1 μg/mL). Finally, RANKL mRNA was up-regulated in BM T lymphocytes of MM patients with severe osteolytic lesions, suggesting that T cells could be involved at least in part in MM-induced osteolysis through the RANKL overexpression.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Kristine M Wadosky ◽  
Sri N Batchu ◽  
Angie Hughson ◽  
Kathy Donlon ◽  
Craig N Morrell ◽  
...  

Introduction: Our laboratory has shown that Axl, a receptor tyrosine kinase, is important in both vascular and immune functions during deoxycorticosterone acetate (DOCA)-salt hypertension. We hypothesized that Axl activity specifically in T lymphocytes could explain the dependence of hypertension on Axl. Methods and Results: We did adoptive transfers of either Axl+/+ or Axl-/- CD4+ T cells to RAG1-/- mice that lack mature T cells. Once CD4+ T cell repopulations were confirmed, we induced DOCA-salt hypertension for 6 weeks. Systolic blood pressure (BP, mmHg) increased by 20±5 in Axl+/+RAG-/- mice after DOCA-salt, but Axl-/- RAG-/- mice had increases in BP by only 6+3 after 6 weeks of DOCA-salt. We isolated naïve CD4+ T cells from both Axl+/+ and Axl-/- littermates and primed them under either Th1 or Th2 polarizing conditions in culture. Production of interferon gamma (IFN-γ ng/mL) was significantly decreased (-23%, p<0.05) in Axl-/- (396±23) compared to Axl+/+ (512±42) under Th1-priming. However, Axl had no effect on interleukin 4 (IL-4, ng/mL) production under Th2 polarizing conditions. Intracellular staining of the Th1/Th2 cells with IFN-γ and IL-4 antibodies by flow cytometry confirmed expression of cytokines in culture media. Complete blood counts showed that Axl-/- mice had significantly lower white blood cells due to decreased numbers of lymphocytes (4.5±0.7x10 9 ) compared to Axl+/+ mice (7.8±0.7x10 9 ). We found a higher population of AnnexinV (marker of early apoptosis)-positive peripheral leukocytes in Axl-/- mice (10±1%) compared to Axl+/+ (4±1%) by flow cytometry; while the percentages of dead cells (~10%) were similar between Axl+/+ and Axl-/- mice. Conclusions: Altogether we show that expression of Axl by T cells drives salt-induced hypertension. The mechanism of Axl-dependent effects on T cells occurs via T-cell-dependent expression of the pro-inflammatory cytokine IFN-γ. In addition, Axl plays a role in inhibiting lymphocyte apoptosis in the circulation. Future work will focus on how Axl expression in T cells affects T cell-dependent vascular remodeling during hypertension.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Antoine Caillon ◽  
Pierre Paradis ◽  
Ernesto L Schiffrin

Objective: Both innate (monocyte/macrophages) and adaptive immune cells (T lymphocytes) have been shown to play a role in the development of vascular injury in hypertension. Recently, we demonstrated that a small subset of “innate-like” T lymphocytes, expressing the γ/δ T cell receptor (TCR) rather than the αβ TCR, plays a key role in hypertension and vascular injury. We demonstrated an increased number and activation (CD69 + ) of γδ T cells during the development of hypertension caused by angiotensin (Ang) II infusion, and that deficiency in γδ T cells prevented Ang II-induced hypertension, resistance artery endothelial dysfunction and spleen T-cell activation in mice. We hypothesized that γδ T cells mediate activation of other T cells in hypertension. Method and Results: Fourteen to 15-week old male C57BL/6 wild-type (WT) mice were infused with Ang II (490 ng/kg/min, SC) for 3, 7 and 14 days (n=5-7) and spleen T cell profile was determined by flow cytometry. A correlation was demonstrated between the frequency (FREQ) and the number (#) of activated CD69 + γδ T cells and CD4 + CD69 + T cells (FREQ: r=0.41, P <0.05 and #: r=0.58, P <0.001) and CD8 + CD69 + T cells (FREQ: r=0.36, P <0.05 and #: r=0.50, P <0.01). We also demonstrated a high correlation between the # of CD69 + γδ T cells expressing CD27, a marker of interferon-γ expressing cells and a member of the T-T interaction molecules, with CD4 + CD69 + (r=0.88, P <0.001) and CD8 + CD69 + (r=0.81, P <0.01) T cells after 7 days of Ang II infusion. Conclusion: This study demonstrated an association between CD27 + CD69 + γδ T cells and activated T cells. These results suggest that γδ T cells drive activation of other T cells in Ang II-induced hypertension. Targeting γδ T cells may contribute to reduce inflammation in hypertension.


Sign in / Sign up

Export Citation Format

Share Document