scholarly journals Shared genetic architecture underlying root metaxylem phenotypes under drought stress in cereals

2020 ◽  
Author(s):  
Stephanie P. Klein ◽  
Jenna E. Reeger ◽  
Shawn M. Kaeppler ◽  
Kathleen M. Brown ◽  
Jonathan P. Lynch

AbstractRoot metaxylem are phenotypically diverse structures whose function is related to their anatomy, particularly under drought stress. Much research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but monocots are relatively unexplored. In maize (Zea mays), a robust pipeline integrated a GWAS of root metaxylem phenes under well-watered and water stress conditions with a gene co-expression network to identify candidate genes most likely to impact metaxylem phenotypes. We identified several promising candidate genes in 14 gene co-expression modules inferred to be functionally relevant to xylem development. We also identified five gene candidates that co-localized in multiple root metaxylem phenes in both well-watered and water stress conditions. Using a rice GWAS conducted in parallel, we detected overlapping genetic architecture influencing root metaxylem phenotypes by identifying eight pairs of syntenic candidate genes significantly associated with metaxylem phenes. There is evidence that the genes of these syntenic pairs may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Our study demonstrates a powerful new strategy for identifying promising gene candidates and suggests several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.One sentence summaryCross-species genome-wide association studies and a gene coexpression network identified genes associated with root metaxylem phenotypes in maize under water stress and non-stress and rice.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


2019 ◽  
Vol 20 (12) ◽  
pp. 3041 ◽  
Author(s):  
Li ◽  
Xu ◽  
Yang ◽  
Zhao

Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein and oil content are two valuable quality traits controlled by multiple genes in soybean. In this study, the restricted two-stage multi-locus genome-wide association analysis (RTM-GWAS) procedure was performed to dissect the genetic architecture of seed protein and oil content in a diverse panel of 279 soybean accessions from the Yangtze and Huaihe River Valleys in China. We identified 26 quantitative trait loci (QTLs) for seed protein content and 23 for seed oil content, including five associated with both traits. Among these, 39 QTLs corresponded to previously reported QTLs, whereas 10 loci were novel. As reported previously, the QTL on chromosome 20 was associated with both seed protein and oil content. This QTL exhibited opposing effects on these traits and contributed the most to phenotype variation. From the detected QTLs, 55 and 51 candidate genes were identified for seed protein and oil content, respectively. Among these genes, eight may be promising candidate genes for improving soybean nutritional quality. These results will facilitate marker-assisted selective breeding for soybean protein and oil content traits.


2021 ◽  
Author(s):  
Siffat Ullah Khan ◽  
Yanxiao Zheng ◽  
Zaid Chachar ◽  
Xuhuan Zhang ◽  
Guyi Zhou ◽  
...  

Abstract Drought is one of the most critical environmental factors constraining corn production especially when it occurs during flowering, resulting in serious yield losses. In this study, anthesis to silk interval (ASI), plant height (PH), and ear biomass at the silking date (EBM) of 279 inbred lines were evaluated under water-stress (WS) and well-water (WW) field conditions for three consecutive years. Averagely, ASI was extended by 25.96%, ear biomass was decreased by 17.54%, and the PH was reduced by 12.47% under drought stress conditions. Genome wide association studies (GWAS) were carried out using phenotypic values under WS, WW and drought-tolerance index (WS-WW or WS/WW) applying mixed linear model controlling both population structure and relative kinship. Totally, 71, 159, and 21 SNPs were significantly (P < 10-5) associated with ASI, ear biomass, and PH, respectively. Candidate genes encoding ARABIDILLO 1 protein, glycoprotein, Tic22-like and Zinc finger family protein for ASI, and 26S proteasome non-ATPase regulatory subunit-9 for EBM, were identified under both WW and WS conditions. Pyridoxal phosphate transferase was associated with EBM under drought stress treatment in consecutive two years. Furthermore, most candidate genes were evidenced to be drought responsive in the association panel. Meanwhile, the favourable/drought tolerance haplotypes were identified based on haplotype analysis. These findings provide insights into the genetic basis of drought tolerance at the flowering stage especially for the female inflorescence development and will facilitate high drought tolerant maize breeding.


2021 ◽  
Author(s):  
Willian Giordani ◽  
Henrique Castro Gama ◽  
Alisson Fernando Chiorato ◽  
João Paulo Rodrigues Marques ◽  
Luis Eduardo Aranha Camargo ◽  
...  

Abstract Root-knot nematodes (RKN), particularly Meloidogyne incognita, are among the most damaging and prevalent agricultural pathogens due to their ability to infect roots of almost all crop species, including common bean. The best strategy for their control is through the use of resistant cultivars. However, laborious phenotyping procedures make it difficult to assess nematode resistance in breeding programs. For common bean, this task is especially challenging since little has been done to discover resistance genes or find markers to assist selection. In this study, we performed genome-wide association studies and QTL mapping to explore the genetic architecture and genomic regions underlying the resistance to M. incognita and to identify candidate resistance genes. Phenotypic data were collected by a high-throughput assay, and the number of egg masses and root-galling index were evaluated 30 days after inoculation. Complex genetic architecture and independent genomic regions were associated with each trait according to the Fixed and random model Circulating Probability Unification. SNPs located on chromosomes Pv06, Pv07, Pv08 and Pv11 were associated with the number of egg masses, and on Pv01, Pv02, Pv05 and Pv10 with root-galling. A total of 215 candidate genes were identified, including 14 resistance gene analogs and five differentially expressed in a previous RNA-seq analysis. The histochemical analysis indicated that the reactive oxygen species might play a role in the resistance response. Our findings open new perspectives to improve selection efficiency for RKN resistance in common bean, and the candidate genes are valuable targets for functional investigation and gene editing approaches.


2021 ◽  
Author(s):  
Huanhuan Zhao ◽  
Keith W. Savin ◽  
Yongjun Li ◽  
Edmond J Breen ◽  
Pankaj Maharjan ◽  
...  

Abstract Background: Safflower (Carthamus tinctorius L.) has been cultivated worldwide for centuries, originally as a source of textile dyes. Modern safflower breeding has focused on high grain and oil yield and broad adaptability. Here, a genome-wide association study was conducted using a globally diverse Genebank collection of 406 accessions, which included landraces, breeding lines and elite cultivars. We explored the genetic architecture and genotype-by-environment interaction (G × E) patterns of grain yield (YP), days to flowering (DF ), plant height (PH), 500 seed weight (SW), seed oil content (OL), and crude protein content (PR) in four environments (sites) that differed in water availability. Results: Phenotypic variation within the global collection was observed for all traits under differed water stress environments. Two mixed linear models were adopted, and YP exhibited low overall genetic correlations (rGoverall) across sites, while SW and OL had high rGoverall and high pairwise genetic correlations (rGij) across all pairwise sites. Ninety-two marker-trait associations (MTAs) were identified using three methods, single locus genome-wide association studies (GWAS) using a mixed linear model (MLM), the Bayesian multi-locus method (BayesR), and meta-GWAS. MTAs with large effects across all sites were detected for OL, SW, and PR, and MTAs specific for the different water stress sites was identified for all traits. Five MTAs were associated with multiple traits, 4 of 5 MTAs were variously associated with the three traits of SW, OL, and PR and marker effects were consistent with phenotypic observations in different environments. The thresholds of different GWAS methods used in the study affected the number of MTAs identified for complex traits. Conclusions: This study provided insights into the phenotypic variability and genetic architecture of important safflower agronomic traits under different environments. This knowledge is essential to breed for high grain and oil yield and local adaption in safflower.


2021 ◽  
pp. 1-10
Author(s):  
Sophie E. Legge ◽  
Marcos L. Santoro ◽  
Sathish Periyasamy ◽  
Adeniran Okewole ◽  
Arsalan Arsalan ◽  
...  

Abstract Schizophrenia is a severe psychiatric disorder with high heritability. Consortia efforts and technological advancements have led to a substantial increase in knowledge of the genetic architecture of schizophrenia over the past decade. In this article, we provide an overview of the current understanding of the genetics of schizophrenia, outline remaining challenges, and summarise future directions of research. World-wide collaborations have resulted in genome-wide association studies (GWAS) in over 56 000 schizophrenia cases and 78 000 controls, which identified 176 distinct genetic loci. The latest GWAS from the Psychiatric Genetics Consortium, available as a pre-print, indicates that 270 distinct common genetic loci have now been associated with schizophrenia. Polygenic risk scores can currently explain around 7.7% of the variance in schizophrenia case-control status. Rare variant studies have implicated eight rare copy-number variants, and an increased burden of loss-of-function variants in SETD1A, as increasing the risk of schizophrenia. The latest exome sequencing study, available as a pre-print, implicates a burden of rare coding variants in a further nine genes. Gene-set analyses have demonstrated significant enrichment of both common and rare genetic variants associated with schizophrenia in synaptic pathways. To address current challenges, future genetic studies of schizophrenia need increased sample sizes from more diverse populations. Continued expansion of international collaboration will likely identify new genetic regions, improve fine-mapping to identify causal variants, and increase our understanding of the biology and mechanisms of schizophrenia.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Antonio Reverter ◽  
Maria Ballester ◽  
Pamela A. Alexandre ◽  
Emilio Mármol-Sánchez ◽  
Antoni Dalmau ◽  
...  

Abstract Background Analyses of gut microbiome composition in livestock species have shown its potential to contribute to the regulation of complex phenotypes. However, little is known about the host genetic control over the gut microbial communities. In pigs, previous studies are based on classical “single-gene-single-trait” approaches and have evaluated the role of host genome controlling gut prokaryote and eukaryote communities separately. Results In order to determine the ability of the host genome to control the diversity and composition of microbial communities in healthy pigs, we undertook genome-wide association studies (GWAS) for 39 microbial phenotypes that included 2 diversity indexes, and the relative abundance of 31 bacterial and six commensal protist genera in 390 pigs genotyped for 70 K SNPs. The GWAS results were processed through a 3-step analytical pipeline comprised of (1) association weight matrix; (2) regulatory impact factor; and (3) partial correlation and information theory. The inferred gene regulatory network comprised 3561 genes (within a 5 kb distance from a relevant SNP–P < 0.05) and 738,913 connections (SNP-to-SNP co-associations). Our findings highlight the complexity and polygenic nature of the pig gut microbial ecosystem. Prominent within the network were 5 regulators, PRDM15, STAT1, ssc-mir-371, SOX9 and RUNX2 which gathered 942, 607, 588, 284 and 273 connections, respectively. PRDM15 modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency and regulates the production of Th1- and Th2-type immune response. The signal transducer STAT1 has long been associated with immune processes and was recently identified as a potential regulator of vaccine response to porcine reproductive and respiratory syndrome. The list of regulators was enriched for immune-related pathways, and the list of predicted targets includes candidate genes previously reported as associated with microbiota profile in pigs, mice and human, such as SLIT3, SLC39A8, NOS1, IL1R2, DAB1, TOX3, SPP1, THSD7B, ELF2, PIANP, A2ML1, and IFNAR1. Moreover, we show the existence of host-genetic variants jointly associated with the relative abundance of butyrate producer bacteria and host performance. Conclusions Taken together, our results identified regulators, candidate genes, and mechanisms linked with microbiome modulation by the host. They further highlight the value of the proposed analytical pipeline to exploit pleiotropy and the crosstalk between bacteria and protists as significant contributors to host-microbiome interactions and identify genetic markers and candidate genes that can be incorporated in breeding program to improve host-performance and microbial traits.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


Sign in / Sign up

Export Citation Format

Share Document