scholarly journals Loss of Muscleblind Splicing Factor Shortens C. elegans Lifespan by Reducing the Activity of p38 MAPK/PMK-1 and Transcription Factors ATF-7 and Nrf/SKN-1

2021 ◽  
Author(s):  
Olli Matilainen ◽  
Ana R. S. Ribeiro ◽  
Jens Verbeeren ◽  
Murat Cetinbas ◽  
Ruslan I. Sadreyev ◽  
...  

AbstractMuscleblind-like splicing regulators (MBNLs) are alternative splicing factors that have an important role in developmental processes. Dysfunction of these factors is a key contributor of different neuromuscular degenerative disorders, including Myotonic Dystrophy type 1 (DM1). Since DM1 is a multisystemic disease characterized by symptoms resembling accelerated aging, we asked whether MBNLs regulate cellular processes required to maintain normal lifespan. By utilizing the model organism Caenorhabditis elegans, we found that loss of MBL-1 (the sole ortholog of mammalian MBNLs), which is known to be required for normal lifespan, shortens lifespan by decreasing the activity of p38 MAPK/PMK-1 as well as the function of transcription factors ATF-7 and SKN-1. Furthermore, we show that mitochondrial stress caused by knockdown of mitochondrial electron transport chain components promotes the longevity of mbl-1 mutants in a partially PMK-1-dependent manner. Together, the data establish a mechanism of how DM1-associated loss of muscleblind affects lifespan. Furthermore, this study suggests that mitochondrial stress could alleviate symptoms caused by the dysfunction of muscleblind splicing factor, creating a potential approach to investigate for therapy.Reviewer token for the RNA-seq data (GEO: GSE146801): wvataksittaffcj

Genetics ◽  
2021 ◽  
Author(s):  
Olli Matilainen ◽  
Ana R S Ribeiro ◽  
Jens Verbeeren ◽  
Murat Cetinbas ◽  
Heini Sood ◽  
...  

Abstract Muscleblind-like splicing regulators (MBNLs) are RNA-binding factors that have an important role in developmental processes. Dysfunction of these factors is a key contributor of different neuromuscular degenerative disorders, including Myotonic Dystrophy type 1 (DM1). Since DM1 is a multisystemic disease characterized by symptoms resembling accelerated aging, we asked which cellular processes do MBNLs regulate that make them necessary for normal lifespan. By utilizing the model organism Caenorhabditis elegans, we found that loss of MBL-1 (the sole ortholog of mammalian MBNLs), which is known to be required for normal lifespan, shortens lifespan by decreasing the activity of p38 MAPK/PMK-1 as well as the function of transcription factors ATF-7 and SKN-1. Furthermore, we show that mitochondrial stress caused by knockdown of mitochondrial electron transport chain components promotes the longevity of mbl-1 mutants in a partially PMK-1-dependent manner. Together, the data establish a mechanism of how DM1-associated loss of muscleblind affects lifespan. Furthermore, this study suggests that mitochondrial stress could alleviate symptoms caused by the dysfunction of muscleblind splicing factor, creating a potential approach to investigate for therapy.


Author(s):  
Sanjib Guha ◽  
Sarah Fischer ◽  
Gail VW Johnson ◽  
Keith Nehrke

ABSTRACTBackgroundA defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear.MethodsHuman 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E and T231A, to mimic phosphorylation and phospho-ablation of a commonly observed pathological epitope, respectively, and K274/281Q, to mimic disease-associated lysine acetylation. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age, and genetically-encoded fluorescent biosensors were used to measure the morphological dynamics and turnover of touch neuron mitochondria.ResultsUnlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage mitophagy in response to mitochondrial stress.ConclusionsLimiting the expression of tau results in a genetic model where pathological modifications and age result in evolving phenotypes, which may more closely resemble the normal progression of AD. The finding that disease-associated PTMs suppress compensatory responses to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
H. B. Atakan ◽  
K. S. Hof ◽  
M. Cornaglia ◽  
J. Auwerx ◽  
M. A. M. Gijs

AbstractFluctuations and deterioration in environmental conditions potentially have a phenotypic impact that extends over generations. Transgenerational epigenetics is the defined term for such intergenerational transient inheritance without an alteration in the DNA sequence. The model organism Caenorhabditis elegans is exceptionally valuable to address transgenerational epigenetics due to its short lifespan, well-mapped genome and hermaphrodite behavior. While the majority of the transgenerational epigenetics on the nematodes focuses on generations-wide heritage, short-term and in-depth analysis of this phenomenon in a well-controlled manner has been lacking. Here, we present a novel microfluidic platform to observe mother-to-progeny heritable transmission in C. elegans at high imaging resolution, under significant automation, and enabling parallelized studies. After approximately 24 hours of culture of L4 larvae under various concentrations and application periods of doxycycline, we investigated if mitochondrial stress was transferred from the mother nematodes to the early progenies. Automated and custom phenotyping algorithms revealed that a minimum doxycycline concentration of 30 µg/mL and a drug exposure time of 15 hours applied to the mothers could induce mitochondrial stress in first embryo progenies indeed, while this inheritance was not clearly observed later in L1 progenies. We believe that our new device could find further usage in transgenerational epigenetic studies modeled on C. elegans.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Sanjib Guha ◽  
Sarah Fischer ◽  
Gail V. W. Johnson ◽  
Keith Nehrke

Abstract Background A defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear. Methods Human 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E, to mimic phosphorylation of a commonly observed pathological epitope, and K274/281Q, to mimic disease-associated lysine acetylation – collectively referred as “PTM-mimetics” – as well as a T231A phosphoablation mutant. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age. Genetically-encoded fluorescent biosensors were expressed in touch neurons and used to measure neuronal morphology, mitochondrial morphology, mitophagy, and macro autophagy. Results Unlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and neuronal morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage neuronal mitophagy in response to mitochondrial stress. Conclusions Limiting the expression of tau results in a genetic model where modifications that mimic pathologic tauopathy-associated PTMs contribute to cryptic, stress-inducible phenotypes that evolve with age. These findings and their relationship to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Silvia Maglioni ◽  
Nayna Arsalan ◽  
Anna Hamacher ◽  
Shiwa Afshar ◽  
Alfonso Schiavi ◽  
...  

The aging process is concurrently shaped by genetic and extrinsic factors. In this work, we screened a small library of natural compounds, many of marine origin, to identify novel possible anti-aging interventions in Caenorhabditis elegans, a powerful model organism for aging studies. To this aim, we exploited a high-content microscopy platform to search for interventions able to induce phenotypes associated with mild mitochondrial stress, which is known to promote animal’s health- and lifespan. Worms were initially exposed to three different concentrations of the drugs in liquid culture, in search of those affecting animal size and expression of mitochondrial stress response genes. This was followed by a validation step with nine compounds on solid media to refine compounds concentration, which led to the identification of four compounds (namely isobavachalcone, manzamine A, kahalalide F and lutein) consistently affecting development, fertility, size and lipid content of the nematodes. Treatment of Drosophila cells with the four hits confirmed their effects on mitochondria activity and lipid content. Out of these four, two were specifically chosen for analysis of age-related parameters, kahalalide F and lutein, which conferred increased resistance to heat and oxidative stress and extended animals’ healthspan. We also found that, out of different mitochondrial stress response genes, only the C. elegans ortholog of the synaptic regulatory proteins neuroligins, nlg-1, was consistently induced by the two compounds and mediated lutein healthspan effects.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chun Kew ◽  
Wenming Huang ◽  
Julia Fischer ◽  
Raja Ganesan ◽  
Nirmal Robinson ◽  
...  

Splicing is a vital cellular process that modulates important aspects of animal physiology, yet roles in regulating innate immunity are relatively unexplored. From genetic screens in C. elegans, we identified splicing factor RNP-6/PUF60 whose activity suppresses immunity, but promotes longevity, suggesting a tradeoff between these processes. Bacterial pathogen exposure affects gene expression and splicing in a rnp-6 dependent manner, and rnp-6 gain and loss-of-function activities reveal an active role in immune regulation. Another longevity promoting splicing factor, SFA-1, similarly exerts an immuno-suppressive effect, working downstream or parallel to RNP-6. RNP-6 acts through TIR-1/PMK-1/MAPK signaling to modulate immunity. The mammalian homolog, PUF60, also displays anti-inflammatory properties, and its levels swiftly decrease after bacterial infection in mammalian cells, implying a role in the host response. Altogether our findings demonstrate an evolutionarily conserved modulation of immunity by specific components of the splicing machinery.


2018 ◽  
Vol 2 (3) ◽  
pp. 76-80 ◽  
Author(s):  
Chen Wang

Sex differences in the brain are prominent features across the animal kingdom. Understanding the anatomical and regulatory mechanisms behind these differences is critical for both explaining sexually dimorphic behaviors and developing sex-targeted treatments for neurological disorders. Clinical studies considering sex biases and basic research on animal models have provided much evidence for the existence of sex differences in the brain and, in a larger sense, sexual dimorphisms in the nervous system. However, due to the complexity of structure and dimorphic behaviors, it is yet unclear precisely how neuronal sexual dimorphisms are regulated on a molecular or cellular level. This commentary reviews available tools for investigating sexual dimorphisms using a simple model organism, the roundworm Caenorhabditis elegans ( C. elegans), which enables one to study gene regulation at single-cell resolution with a number of cutting-edge molecular and genetic technologies. I highlight the doublesex/mab-3 family of transcription factors, first discovered in invertebrates, and their roles in a potentially universal regulatory mechanism underlying neuronal sexual dimorphisms. Studies of these transcription factors using C. elegans, fruit flies, and vertebrates will promote our understanding of fundamental mechanisms behind sex differences in the brain.


2020 ◽  
Vol 20 (4) ◽  
pp. 307-317
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Butyric acid (BT), a short-chain fatty acid, is the preferred colonocyte energy source. The effects of BT on the differentiation, proliferation, and apoptosis of small intestinal epithelial cells of piglets and its underlying mechanisms have not been fully elucidated. Methods: In this study, it was found that 0.2-0.4 mM BT promoted the differentiation of procine jejunal epithelial (IPEC-J2) cells. BT at 0.5 mM or higher concentrations significantly impaired cell viability in a dose- and time-dependent manner. In addition, BT at high concentrations inhibited the IPEC-J2 cell proliferation and induced cell cycle arrest in the G2/M phase. Results: Our results demonstrated that BT triggered IPEC-J2 cell apoptosis via the caspase8-caspase3 pathway accompanied by excess reactive oxygen species (ROS) and TNF-α production. BT at high concentrations inhibited cell autophagy associated with increased lysosome formation. It was found that BT-reduced IPEC-J2 cell viability could be attenuated by p38 MAPK inhibitor SB202190. Moreover, SB202190 attenuated BT-increased p38 MAPK target DDIT3 mRNA level and V-ATPase mRNA level that were responsible for normal acidic lysosomes. Conclusion: In conclusion, 1) at 0.2-0.4 mM, BT promotes the differentiation of IPEC-J2 cells; 2) BT at 0.5 mM or higher concentrations induces cell apoptosis via the p38 MAPK pathway; 3) BT inhibits cells autophagy and promotes lysosome formation at high concentrations.


2021 ◽  
Vol 22 (2) ◽  
pp. 215-236
Author(s):  
Nadine Saul ◽  
Steffen Möller ◽  
Francesca Cirulli ◽  
Alessandra Berry ◽  
Walter Luyten ◽  
...  

AbstractSeveral biogerontology databases exist that focus on genetic or gene expression data linked to health as well as survival, subsequent to compound treatments or genetic manipulations in animal models. However, none of these has yet collected experimental results of compound-related health changes. Since quality of life is often regarded as more valuable than length of life, we aim to fill this gap with the “Healthy Worm Database” (http://healthy-worm-database.eu). Literature describing health-related compound studies in the aging model Caenorhabditis elegans was screened, and data for 440 compounds collected. The database considers 189 publications describing 89 different phenotypes measured in 2995 different conditions. Besides enabling a targeted search for promising compounds for further investigations, this database also offers insights into the research field of studies on healthy aging based on a frequently used model organism. Some weaknesses of C. elegans-based aging studies, like underrepresented phenotypes, especially concerning cognitive functions, as well as the convenience-based use of young worms as the starting point for compound treatment or phenotype measurement are discussed. In conclusion, the database provides an anchor for the search for compounds affecting health, with a link to public databases, and it further highlights some potential shortcomings in current aging research.


Sign in / Sign up

Export Citation Format

Share Document