scholarly journals Untangling the cell immune response dynamic for severe and critical cases of SARS-CoV-2 infection

2021 ◽  
Author(s):  
Rodolfo Blanco-Rodriguez ◽  
Xin Du ◽  
Esteban A. Hernandez Vargas

COVID-19 is a global pandemic leading high death tolls worldwide day by day. Clinical evidence suggests that COVID-19 patients can be classified as non-severe, severe and critical cases. In particular, studies have highlighted the relationship between the lymphopenia and the severity of the illness, where CD8+ T cells have the lowest levels in critical cases. In this work, we aim to elucidate the key parameters that define the course of the disease deviating from severe to critical case. To this end, several mathematical models are proposed to represent the dynamic of the immune response in patients with SARS-CoV-2 infection. The best model had a good fit to reported experimental data, and in accordance with values found in the literature. Our results suggest that a rapid proliferation of CD8+ T cells is decisive in the severity of the disease.

Author(s):  
Zahra Yaghtin ◽  
Richard Webb ◽  
Sayyed Saeid Khayyatzadeh

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has been the cause of a global pandemic. Given the impact of nutritional status upon immune function, it is crucial to understand the relationship between micronutrient intake and severity of the disease. This mini-review aimed to summarize the known associations between specific micronutrients (vitamin A, D, E, C and zinc, selenium and magnesium) and the health of coronavirus-infected patients. Low serum levels of these micronutrients are associated with the incidence and severity of SARS-CoV-2. However, further studies are needed to evaluate the outcomes of supplementation with these nutrients.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 461
Author(s):  
Jenifer Sanchez ◽  
Ian Jackson ◽  
Katie R. Flaherty ◽  
Tamara Muliaditan ◽  
Anna Schurich

Upon activation T cells engage glucose metabolism to fuel the costly effector functions needed for a robust immune response. Consequently, the availability of glucose can impact on T cell function. The glucose concentrations used in conventional culture media and common metabolic assays are often artificially high, representing hyperglycaemic levels rarely present in vivo. We show here that reducing glucose concentration to physiological levels in culture differentially impacted on virus-specific compared to generically activated human CD8 T cell responses. In virus-specific T cells, limiting glucose availability significantly reduced the frequency of effector-cytokine producing T cells, but promoted the upregulation of CD69 and CD103 associated with an increased capacity for tissue retention. In contrast the functionality of generically activated T cells was largely unaffected and these showed reduced differentiation towards a residency phenotype. Furthermore, T cells being cultured at physiological glucose concentrations were more susceptible to viral infection. This setting resulted in significantly improved lentiviral transduction rates of primary cells. Our data suggest that CD8 T cells are exquisitely adapted to their niche and provide a reminder of the need to better mimic physiological conditions to study the complex nature of the human CD8 T cell immune response.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Molalegne Bitew ◽  
Chintu Ravishankar ◽  
Soumendu Chakravarti ◽  
Gaurav Kumar Sharma ◽  
Sukdeb Nandi

Recent invasion of multiple bluetongue virus serotypes (BTV) in different regions of the world necessitates urgent development of efficient vaccine that is directed against multiple BTV serotypes. In this experimental study, cell mediated immune response and protective efficacy of binary ethylenimine (BEI) inactivated Montanide™ ISA 206 adjuvanted pentavalent (BTV-1, 2, 10, 16 and 23) vaccine was evaluated in sheep and direct challenge with homologous BTV serotypes in their respective group. Significant (P<0.05) up-regulation of mRNA transcripts of IFN-α, IL-2, IL-6, IL-12, IFN-γ and TNF-α in PBMCs of vaccinated animals as compared to control (un-vaccinated) animals at certain time points was observed. On the other hand, there was a significant increase in mean ± SD percentage of CD8+ T cells after 7 days post challenge (DPC) but, the mean ± SD percentage of CD4+ T-cell population slightly declined at 7 DPC and enhanced after 14 DPC. Significant differences (P<0.05) of CD8+ and CD4+ T cells population was also observed between vaccinated and unvaccinated sheep. The vaccine also significantly (P<0.05) reduced BTV RNA load in PBMCs of vaccinated animals than unvaccinated animals following challenge. There were no significant difference (P>0.05) in cytokine induction, BTV RNA load and CD8+ and CD4+ cell count among BTV-1, 2, 10, 16 and 23 serotype challenges except significant increase in mean ± SD percentage of CD8+ in BTV-2 group. These findings put forwarded that binary ethylenimine inactivated montanide adjuvanted pentavalent bluetongue vaccine has stimulated cell mediated immune response and most importantly reduced the severity of BTV-1, 2, 10, 16 and 23 infections following challenge in respective group.


Rheumatology ◽  
2019 ◽  
Vol 58 (11) ◽  
pp. 2051-2060 ◽  
Author(s):  
Giovanni Almanzar ◽  
Felix Kienle ◽  
Marc Schmalzing ◽  
Anna Maas ◽  
Hans-Peter Tony ◽  
...  

AbstractObjectiveRA is a chronic inflammatory disease characterized by lymphocyte infiltration and release of inflammatory cytokines. Previous studies have shown that treatment with Janus kinase inhibitors, such as tofacitinib, increased the incidence rate of herpes zoster compared with conventional DMARDs. Therefore, this study aimed to investigate the effect of tofacitinib on the varicella-zoster-virus (VZV)-specific T cell immune response.MethodsThe effect of tofacitinib on the VZV-specific T cell immune response was determined by evaluating the IFNγ production, the proliferative capacity, the VZV-induced differentiation into effector and memory T cells, the expression of activation marker CD69 and helper T cell type 1 (Th1)-characteristic chemokine receptors, such as CXCR3 and CCR5, as well as cytotoxic activity (perforin and granzyme B expression) of CD4+ T cells of patients with RA compared with healthy donors upon stimulation with VZV antigen in vitro.ResultsTofacitinib significantly reduced the IFNγ production, proliferation, activation, and CXCR3 expression of VZV-specific CD4+ T cells in a dose-dependent manner in short- and long-term lymphocyte culture. No effect on the distribution of naive, effectors or memory, or on the expression of perforin or granzyme B by VZV-specific CD4+ T cells was observed.ConclusionThis study showed that tofacitinib significantly modulated the Th1 response to VZV. The poor VZV-specific cellular immune response in patients with RA may be considered in recommendations regarding appropriate vaccination strategies for enhancing the VZV-specific Th1 response.


Author(s):  
Zhengtian Li ◽  
Bing Suo ◽  
Gang Long ◽  
Yue Gao ◽  
Jia Song ◽  
...  

Macrophages have an affinity to developing tumors and have been shown to play a role in tumor combat and immune surveillance. However, the exact mechanism by which macrophages participate in the anti-tumor immune response remains unclear. Hence, the current study aimed to identify the effect of macrophages on gastric cancer (GC) cells via exosomes. Paired cancerous, tumor-adjacent, and non-cancerous stomach tissues were initially from 68 GC patients. T cells were isolated from peripheral blood mononuclear cells (PBMCs) obtained from both the GC patients as well as the healthy donors. Next, the exosomes were isolated from LPS and IFN-γ-induced PBMCs (M1 macrophages) and co-cultured with human GC cells. Another co-culture system comprised of CD3+ T cells and exosomes-treated GC cells was then performed. BALB/c mice and NOD/SCID nude mice were prepared for effects of exosomal miR-16-5p on tumor growth and anti-tumor immune response in GC in vivo. A relationship between M1 macrophages and the poor survival of GC patients was identified, while they secreted exosomes to inhibit GC development and activate a T cell-dependent immune response. Our results revealed that miR-16-5p was transferred intercellularly from M1 macrophages to GC cells via exosomes and targeted PD-L1. M1 macrophage-derived exosomes containing miR-16-5p were found to trigger a T cell immune response which inhibited tumor formation both in vitro and in vivo by decreasing the expression of PD-L1. Taken together, the key findings of the current study suggest that M1 macrophage-derived exosomes carrying miR-16-5p exert an inhibitory effect on GC progression through activation of T cell immune response via PD-L1. Our study highlights the promise of M1 macrophages as a potential cell-based therapy for GC treatment by increasing miR-16-5p in exosomes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3893-3893
Author(s):  
Colm Keane ◽  
Kimberly Jones ◽  
Clare Gould ◽  
David Hamm ◽  
Peter Wood ◽  
...  

Abstract Background: We have recently demonstrated that an 'immune score' is strongly and independently prognostic in de novo DLBCL treated with R-CHOP immuno-chemotherapy. The score quantifies the relative composition of immune effectors (T cells) and checkpoints (e.g. PD-1 axis molecules and M2 macrophages), as a measure of net anti-tumoral immunity within the TME. It is also known that a diverse TCR repertoire is a hallmark of a robust anti-HIV T cell immune response; conversely in metastatic melanoma treated with anti-PD-1 checkpoint blockade, narrow more clonal TCR repertoires are associated with favorable response. The relationship between the intra-tumoral TCR repertoire and the TME in DLBCL following R-CHOP immuno-chemotherapy is unknown. Methods High-throughput unbiased TCR β chain sequencing was performed on 116 nodal tissues (101 de novo DLBCL patients treated with R-CHOP with long-term follow-up including 8 EBV+DLBCL; and 15 age/gender matched healthy lymph nodes). Outcomes included measurement of productive uniques (a measure of the number of functional T cells with a distinct TCR rearrangement or 'richness'); entropy (a measure of TCR 'diversity'), 'clonality' (a measure of clonal expansions) and the 'maximal frequency' of the most highly expressed clone within tumor biopsies. Results were compared to digital quantification (by nanoString) of key immune effector and checkpoint genes within the TME, the immune score, malignant cell-of-origin (COO), R-IPI and patient survival. Results: First we compared the TCR repertoire in lymphomatous and healthy nodes. There was a marked increase in clonality, reduced diversity and high maximal frequency within DLBCL nodes relative to healthy nodal tissue (both p<0.0001), consistent with an abnormally narrow TCR repertoire of antigen-specific T cells. Next, we tested the relationship between TCR and the TME. Notably, there was modest (r=0.3-0.7) but highly significant (all p<0.001) positive correlations between both richness and diversity (but not clonality) with CD3/CD4/CD8 T cells, and a range of immune checkpoints including PD-L1, PD-L2, LAG-3, CSF-1 and TIM-3. These findings are strongly suggestive of an adaptive immune response, in which malignant B cells influence (i.e. 'adapt') the TME in an attempt to counter an effective anti-lymphoma T-cell response that is in part influenced by the breadth of the TCR repertoire. Then we investigated the TCR repertoire in the context of prognosis and overall survival (OS) following R-CHOP. There were no correlations between COO or R-IPI with any TCR parameter. However, the presence of a high maximal frequency in the tumour biopsy was associated with significantly inferior 5 year OS of 59% compared to 81% in patients without a high maximal frequency (p=0.03, Figure 1). As expected, the immune score stratified patients into highly disparate outcomes: high-score 5-year overall survival 96% versus 42% for low-score (p<0.0001). Interestingly, there were significant differences in the TCR repertoire between the two groups. There was a significant increase for both richness and diversity in high immune score lymphoma patients (p=0.015 and p=0.018 respectively). In keeping, clonality was not increased in high-immune score patients. The only samples associated with increased T cell clonality were those patients with very high levels of intratumoral EBV, potentially reflecting the latent viral antigens expressed by this lymphoma. In the group of patients with poor prognosis (5 year OS 59%), defined by high maximal frequency, the immune score stratified two groups with very different outcomes (5 year OS 90% vs. 30%, p=0.003). Conclusions: These findings indicate the TCR repertoire as a key parameter of the TME that the malignant B cell attempts to narrow. A broad TCR repertoire is associated with a good prognostic immune score (i.e. increased T cells relative to PD-1 axis molecules and M2 macrophages checkpoints) after R-CHOP immunoÐchemotherapy, whereas a more clonal T cell response is associated with significantly inferior outcome. Figure 1. Figure 1. Disclosures Hamm: Adaptive Biotech: Employment.


Author(s):  
Nesrin I. Tarbiah

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus (COVID-19), materialized in the city of Wuhan and quickly spread to form a global pandemic. An essential role in the immune system is undertaken by lymphocytes, which defend against bacteria, viruses, fungi, and parasites. Previous study found that very severe COVID-19 patients had suppression of the immune response enabling the virus to spread and cause more damage. This was evident by the changes in their white blood cell and lymphocyte count. Early clinical findings suggest that those suffering from severe COVID-19 have reduced numbers of lymphocytes, monocytes, and other granulocytes. One of the most efficient responses for a variety of viral infections is cellular immune response activation, especially via T cells. Viruses can be eliminated by T cytotoxic (CD8+) (Tc) in the host body, these secrete a variety of molecules, including interferons (IFNs), granzyme, and perforin. T helper (CD4+) (Th) cells help by assisting cytotoxic T cells and B cells to eliminate viral infection. CD8+ and CD4+ work together in a coordinated immune response with other constituents to primarily resolve acute viral infections, and after to produce protection against any reinfection. Also, COVID-19 causes dramatic changes in cytokine profiles and serological markers. Therefore, the subsets of immune cells and the level of the pro-inflammatory cytokines are crucial evidence to determine the severity of COVID-19. The disease severity has already been proved to be associated with the disruption in the proinflammatory chemokine response, this eventually leads to a cytokine storm and progression of cytokines release syndrome (CRS). This review aimed to demonstrate a full understanding of the alterations to the immune response by determining the T-cell expression and cytokine levels against the pathological processes of COVID-19, which can be a significant step in early treatment and diagnosis of this disease, in reduction of COVID-19 mortality cases, and to emphasize the most recent and current studies to try to identify new immuno-therapeutics for COVID-19.  


2019 ◽  
Vol 20 (20) ◽  
pp. 5165 ◽  
Author(s):  
Hadia M. Abdelaal ◽  
Emily K. Cartwright ◽  
Pamela J. Skinner

The development of in situ major histocompatibility complex (MHC) tetramer (IST) staining to detect antigen (Ag)-specific T cells in tissues has radically revolutionized our knowledge of the local cellular immune response to viral and bacterial infections, cancers, and autoimmunity. IST combined with immunohistochemistry (IHC) enables determination of the location, abundance, and phenotype of T cells, as well as the characterization of Ag-specific T cells in a 3-dimensional space with respect to neighboring cells and specific tissue locations. In this review, we discuss the history of the development of IST combined with IHC. We describe various methods used for IST staining, including direct and indirect IST and IST performed on fresh, lightly fixed, frozen, and fresh then frozen tissue. We also describe current applications for IST in viral and bacterial infections, cancer, and autoimmunity. IST combined with IHC provides a valuable tool for studying and tracking the Ag-specific T cell immune response in tissues.


Sign in / Sign up

Export Citation Format

Share Document