scholarly journals Novel Interpretable Tissue-Specific and Multi-Tissue Transcriptomic Clocks to Infer Aging Mechanisms

2021 ◽  
Author(s):  
Aayush Gupta ◽  
Mindren Lu ◽  
Jessica Sun

Aging is characterized as a progressive decline in fitness that ultimately results in death. We set out to build both tissue-specific and multi-tissue transcriptomic clocks to make global tissue age predictions in individuals from GTEx. Existing work in the field primarily uses epigenetic clocks as predictors of age, but these models have known issues and are significantly less interpretable than their transcriptomic counterparts. Due to their transcriptomic nature, we can use these models to directly infer mechanisms of aging from their features. Linear regression remains the current standard analysis technique, but we improved upon its baseline performance with modern techniques, exploring both XGBoost and MLPs. We also experimented with using deconvolved cell data for predictions, which account for cellular composition and reduce signal distortion from rare cell types. Since it is known that the heterogeneity of cell types in particular tissues can lead to noise in these models, we proposed using deconvolution as a potential remedy for this problem. Our results found that MLPs are not well suited for the task due to a lack of training data, but the use of XGBoost is effective at improving the baseline performance of predictions of existing tissue-specific clocks. These models allowed us to directly compute genes most important to age prediction in our models, and we showed that multiple genes found have been independently identified elsewhere to show evidence of correlation with age. Given the small size of our datasets, we were unable to make conclusive determinations about multi-tissue predictors, but preliminary results suggest that the technique shows promise and is worthy of future investigation. Likewise, given our limited deconvolved cell data, we did not currently observe strong results, but we again note that this is an area in need of further investigation. By improving upon the performance of existing models, we demonstrated that a novel machine learning technique, XGBoost, can be an effective technique to further our understanding of aging mechanisms by extraction of the most relevant genes found in those models. This is significant because the genetic causes of aging are still not fully understood, and research in the field of aging is lacking in comparison to other domains. As the problem of identifying tissues that age at different rates is of specific interest, our tissue-specific models potentially have other applications in this domain, including informing pathologies in tissues that are found to be aging faster, or analyzing how people with similar ages can have vastly different tissue ages.

2020 ◽  
Vol 11 ◽  
Author(s):  
Dimitris G. Placantonakis ◽  
Maria Aguero-Rosenfeld ◽  
Abdallah Flaifel ◽  
John Colavito ◽  
Kenneth Inglima ◽  
...  

Neurologic manifestations of the novel coronavirus SARS-CoV-2 infection have received wide attention, but the mechanisms remain uncertain. Here, we describe computational data from public domain RNA-seq datasets and cerebrospinal fluid data from adult patients with severe COVID-19 pneumonia that suggest that SARS-CoV-2 infection of the central nervous system is unlikely. We found that the mRNAs encoding the ACE2 receptor and the TMPRSS2 transmembrane serine protease, both of which are required for viral entry into host cells, are minimally expressed in the major cell types of the brain. In addition, CSF samples from 13 adult encephalopathic COVID-19 patients diagnosed with the viral infection via nasopharyngeal swab RT-PCR did not show evidence for the virus. This particular finding is robust for two reasons. First, the RT-PCR diagnostic was validated for CSF studies using stringent criteria; and second, 61% of these patients had CSF testing within 1 week of a positive nasopharyngeal diagnostic test. We propose that neurologic sequelae of COVID-19 are not due to SARS-CoV-2 meningoencephalitis and that other etiologies are more likely mechanisms.


2021 ◽  
Author(s):  
Jordan W. Squair ◽  
Michael A. Skinnider ◽  
Matthieu Gautier ◽  
Leonard J. Foster ◽  
Grégoire Courtine
Keyword(s):  

2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Yuanyuan Li ◽  
Ping Luo ◽  
Yi Lu ◽  
Fang-Xiang Wu

Abstract Background With the development of the technology of single-cell sequence, revealing homogeneity and heterogeneity between cells has become a new area of computational systems biology research. However, the clustering of cell types becomes more complex with the mutual penetration between different types of cells and the instability of gene expression. One way of overcoming this problem is to group similar, related single cells together by the means of various clustering analysis methods. Although some methods such as spectral clustering can do well in the identification of cell types, they only consider the similarities between cells and ignore the influence of dissimilarities on clustering results. This methodology may limit the performance of most of the conventional clustering algorithms for the identification of clusters, it needs to develop special methods for high-dimensional sparse categorical data. Results Inspired by the phenomenon that same type cells have similar gene expression patterns, but different types of cells evoke dissimilar gene expression patterns, we improve the existing spectral clustering method for clustering single-cell data that is based on both similarities and dissimilarities between cells. The method first measures the similarity/dissimilarity among cells, then constructs the incidence matrix by fusing similarity matrix with dissimilarity matrix, and, finally, uses the eigenvalues of the incidence matrix to perform dimensionality reduction and employs the K-means algorithm in the low dimensional space to achieve clustering. The proposed improved spectral clustering method is compared with the conventional spectral clustering method in recognizing cell types on several real single-cell RNA-seq datasets. Conclusions In summary, we show that adding intercellular dissimilarity can effectively improve accuracy and achieve robustness and that improved spectral clustering method outperforms the traditional spectral clustering method in grouping cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Deepa Bhartiya

AbstractLife-long tissue homeostasis of adult tissues is supposedly maintained by the resident stem cells. These stem cells are quiescent in nature and rarely divide to self-renew and give rise to tissue-specific “progenitors” (lineage-restricted and tissue-committed) which divide rapidly and differentiate into tissue-specific cell types. However, it has proved difficult to isolate these quiescent stem cells as a physical entity. Recent single-cell RNAseq studies on several adult tissues including ovary, prostate, and cardiac tissues have not been able to detect stem cells. Thus, it has been postulated that adult cells dedifferentiate to stem-like state to ensure regeneration and can be defined as cells capable to replace lost cells through mitosis. This idea challenges basic paradigm of development biology regarding plasticity that a cell enters point of no return once it initiates differentiation. The underlying reason for this dilemma is that we are putting stem cells and somatic cells together while processing for various studies. Stem cells and adult mature cell types are distinct entities; stem cells are quiescent, small in size, and with minimal organelles whereas the mature cells are metabolically active and have multiple organelles lying in abundant cytoplasm. As a result, they do not pellet down together when centrifuged at 100–350g. At this speed, mature cells get collected but stem cells remain buoyant and can be pelleted by centrifuging at 1000g. Thus, inability to detect stem cells in recently published single-cell RNAseq studies is because the stem cells were unknowingly discarded while processing and were never subjected to RNAseq. This needs to be kept in mind before proposing to redefine adult stem cells.


Author(s):  
George B. Stefano ◽  
Richard M. Kream

AbstractMitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii19-ii19
Author(s):  
Anca Mihalas ◽  
Heather Feldman ◽  
Anoop Patel ◽  
Patrick Paddison

Abstract Current standard of care therapy for glioblastoma (GBM) includes cytoreduction followed by ablative therapies that target rapidly dividing cell types. However, the presence of quiescent-like/G0 states, therefore, represents a natural reservoir of tumor cells that are resistant to current treatments. Quiescence or G0 phase is a reversible state of “stasis” cells enter in response to developmental or environmental cues. To gain insight into how glioblastoma cells might regulate G0-like states, we performed a genome-wide CRISPR-Cas9 screen in patient-derived GBM stem-like cells (GSCs) harboring a G0-reporter to identify genes that when inhibited trap GSCs in G0-like states. Among the top screen hits were members of the Tip60/KAT5 histone acetyltransferase complex, which targets both histones (e.g., H4) and non-histone proteins for acetylation. NuA4 functions as a transcriptional activator, whose activities are coordinated with MYC in certain contexts, and also participates in DNA double-strand break repair by facilitating chromatin opening. However, currently little is known about the roles for NuA4 complex in GBM biology. Through modeling KAT5 function in GSC in vitro cultures and in vivo tumors, we find that KAT5 inhibition causes cells to arrest in a G0-like state with high p27 levels, G1-phase DNA content, low protein synthesis rates, low rRNA rates, lower metabolic rate, suppression of cell cycle gene expression, and low histone H4 acetylation. Interestingly, partial inhibition of KAT5 activity slows highly aggressive tumor growth, while increasing p27hi H4-aclow populations. Remarkably, we that low grade gliomas have significantly higher H4-aclow subpopulations and generally lower H4-ac levels than aggressive grade IV tumors. Taken together, our results suggest that NuA4/KAT5 activity may play a key role in quiescence ingress/egress in glioma and that targeting its activity in high grade tumors may effectively “down grade” them, thus, increase patient survival.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A520-A520
Author(s):  
Son Pham ◽  
Tri Le ◽  
Tan Phan ◽  
Minh Pham ◽  
Huy Nguyen ◽  
...  

BackgroundSingle-cell sequencing technology has opened an unprecedented ability to interrogate cancer. It reveals significant insights into the intratumoral heterogeneity, metastasis, therapeutic resistance, which facilitates target discovery and validation in cancer treatment. With rapid advancements in throughput and strategies, a particular immuno-oncology study can produce multi-omics profiles for several thousands of individual cells. This overflow of single-cell data poses formidable challenges, including standardizing data formats across studies, performing reanalysis for individual datasets and meta-analysis.MethodsN/AResultsWe present BioTuring Browser, an interactive platform for accessing and reanalyzing published single-cell omics data. The platform is currently hosting a curated database of more than 10 million cells from 247 projects, covering more than 120 immune cell types and subtypes, and 15 different cancer types. All data are processed and annotated with standardized labels of cell types, diseases, therapeutic responses, etc. to be instantly accessed and explored in a uniform visualization and analytics interface. Based on this massive curated database, BioTuring Browser supports searching similar expression profiles, querying a target across datasets and automatic cell type annotation. The platform supports single-cell RNA-seq, CITE-seq and TCR-seq data. BioTuring Browser is now available for download at www.bioturing.com.ConclusionsN/A


2009 ◽  
Vol 12 (5) ◽  
pp. 337-346 ◽  
Author(s):  
Anne M. Stevens ◽  
Heidi M. Hermes ◽  
Meghan M. Kiefer ◽  
Joe C. Rutledge ◽  
J. Lee Nelson

Maternal microchimerism (MMc) has been purported to play a role in the pathogenesis of autoimmunity, but how a small number of foreign cells could contribute to chronic, systemic inflammation has not been explained. Reports of peripheral blood cells differentiating into tissue-specific cell types may shed light on the problem in that chimeric maternal cells could act as target cells within tissues. We investigated MMc in tissues from 7 male infants. Female cells, presumed maternal, were characterized by simultaneous immunohistochemistry and fluorescence in situ hybridization for X- and Y-chromosomes. Maternal cells constituted 0.017% to 1.9% of parenchymal cells and were found in all infants in liver, pancreas, lung, kidney, bladder, skin, and spleen. Maternal cells were differentiated: maternal hepatocytes in liver, renal tubular cells in kidney, and β-islet cells in pancreas. Maternal cells were not found in areas of tissue injury or inflammatory infiltrate. Maternal hematopoietic cells were found only in hearts from patients with neonatal lupus. Thus, differentiated maternal cells are present in multiple tissue types and occur independently of inflammation or tissue injury. Loss of tolerance to maternal parenchymal cells could lead to organ-specific “auto” inflammatory disease and elimination of maternal cells in areas of inflammation.


1985 ◽  
Vol 5 (6) ◽  
pp. 1295-1300
Author(s):  
Y Barra ◽  
K Tanaka ◽  
K J Isselbacher ◽  
G Khoury ◽  
G Jay

The identification of a unique major histocompatibility complex class I gene, designated Q10, which encodes a secreted rather than a cell surface antigen has led to questions regarding its potential role in regulating immunological functions. Since the Q10 gene is specifically activated only in the liver, we sought to define the molecular mechanisms which control its expression in a tissue-specific fashion. Results obtained by transfection of the cloned Q10 gene, either in the absence or presence of a heterologous transcriptional enhancer, into a variety of cell types of different tissue derivations are consistent with the Q10 gene being regulated at two levels. The first is by a cis-dependent mechanism which appears to involve site-specific DNA methylation. The second is by a trans-acting mechanism which would include the possibility of an enhancer binding factor. The ability to efficiently express the Q10 gene in certain transfected cell lines offers an opportunity to obtain this secreted class I antigen in quantities sufficient for functional studies; this should also make it possible to define regulatory sequences which may be responsible for the tissue-specific expression of Q10.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2799-2812 ◽  
Author(s):  
A. McCormick ◽  
N. Core ◽  
S. Kerridge ◽  
M.P. Scott

Along the anterior-posterior axis of animal embryos, the choice of cell fates, and the organization of morphogenesis, is regulated by transcription factors encoded by clustered homeotic or ‘Hox’ genes. Hox genes function in both epidermis and internal tissues by regulating the transcription of target genes in a position- and tissue-specific manner. Hox proteins can have distinct targets in different tissues; the mechanisms underlying tissue and homeotic protein specificity are unknown. Light may be shed by studying the organization of target gene enhancers. In flies, one of the target genes is teashirt (tsh), which encodes a zinc finger protein. tsh itself is a homeotic gene that controls trunk versus head development. We identified a tsh gene enhancer that is differentially activated by Hox proteins in epidermis and mesoderm. Sites where Antennapedia (Antp) and Ultrabithorax (Ubx) proteins bind in vitro were mapped within evolutionarily conserved sequences. Although Antp and Ubx bind to identical sites in vitro, Antp activates the tsh enhancer only in epidermis while Ubx activates the tsh enhancer in both epidermis and in somatic mesoderm. We show that the DNA elements driving tissue-specific transcriptional activation by Antp and Ubx are separable. Next to the homeotic protein-binding sites are extensive conserved sequences likely to control tissue activation by different homeodomain proteins. We propose that local interactions between homeotic proteins and other factors effect activation of targets in proper cell types.


Sign in / Sign up

Export Citation Format

Share Document