scholarly journals Sustained mechanical tension governs fibrogenic activation of tendon stromal cells in systemic sclerosis

2021 ◽  
Author(s):  
Amro A. Hussien ◽  
Robert Knell ◽  
Florian Renoux ◽  
Stefania Wunderli ◽  
Barbara Niederoest ◽  
...  

Fibrosis is a pathological outcome of aberrant repair responses in systemic sclerosis and affects many tissues, including tendons. Progressive matrix stiffening is a key feature of this pathological remodeling. How dysregulated tissue mechanics contribute to the persistence of the fibrotic phenotype has been obscured by limited availability of experimental tissue models that are both controllable and capture essential aspects of the tendon biophysical niche. Here, we developed a modular, cantilever-based platform that allows culture of 3D tendon-like constructs under easily variable static tension, emulating this central tendon-specific structure function relationship. The system reveals that elevated matrix tension instigates fibroblast-to-myofibroblast activation eliciting scar-like phenotypes in vitro. By using this mechano-culture system and preclinical and clinical models of systemic sclerosis, we further show that 3D matrix stiffness is inversely correlated with the transcription of major pro-fibrotic collagens, but positively correlate with the expression of markers of stromal-immune interactions. Co-culture of tendon stromal fibroblasts and bone marrow-derived macrophages override stiffness-mediated downregulation of matrix transcription, suggesting that normal tension mediated checkpoints are superseded by the local tissue immune state. Our study highlights the power of 3D reductionist approaches in dissecting the contribution of the elevated matrix tension to the positive feedforward loops between activated fibroblasts and progressive ECM stiffening in systemic sclerosis.

2013 ◽  
Vol 51 (01) ◽  
Author(s):  
J Kah ◽  
J Schrader ◽  
A Wüstenberg ◽  
G Tiegs ◽  
G Sass
Keyword(s):  

2020 ◽  
Vol 27 (5) ◽  
pp. 432-446
Author(s):  
Akiko Yamamoto ◽  
Ken-ichiro Matsunaga ◽  
Toyoaki Anai ◽  
Hitoshi Kawano ◽  
Toshihisa Ueda ◽  
...  

Background: Intermediate Filaments (IFs) are major constituents of the cytoskeletal systems in animal cells. Objective: To gain insights into the structure-function relationship of invertebrate cytoplasmic IF proteins, we characterized an IF protein from the platyhelminth, Dugesia japonica, termed Dif-1. Method: cDNA cloning, in situ hybridization, immunohistochemical analysis, and IF assembly experiments in vitro using recombinant Dif-1, were performed for protein characterization. Results: The structure deduced from the cDNA sequence showed that Djf-1 comprises 568 amino acids and has a tripartite domain structure (N-terminal head, central rod, and C-terminal tail) that is characteristic of IF proteins. Similar to nuclear IF lamins, Djf-1 contains an extra 42 residues in the coil 1b subdomain of the rod domain that is absent from vertebrate cytoplasmic IF proteins and a nuclear lamin-homology segment of approximately 105 residues in the tail domain; however, it contains no nuclear localization signal. In situ hybridization analysis showed that Djf-1 mRNA is specifically expressed in cells located within the marginal region encircling the worm body. Immunohistochemical analysis showed that Djf-1 protein forms cytoplasmic IFs located close to the microvilli of the cells. In vitro IF assembly experiments using recombinant proteins showed that Djf-1 alone polymerizes into IFs. Deletion of the extra 42 residues in the coil 1b subdomain resulted in the failure of IF formation. Conclusions: Together with data from other histological studies, our results suggest that Djf- 1 is expressed specifically in anchor cells within the glandular adhesive organs of the worm and that Djf-1 IFs may play a role in protecting the cells from mechanical stress.


2020 ◽  
Vol 21 (11) ◽  
pp. 1107-1118
Author(s):  
Ningning Li ◽  
Zhan Wang ◽  
Tao Sun ◽  
Yanfei Lei ◽  
Xianghua Liu ◽  
...  

Objective: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. Materials and Methods: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-β1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 μM), followed by the stimulation of TGF-β1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-β1. Result: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-β1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. Conclusion: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.


2009 ◽  
Vol 29 (01) ◽  
pp. 17-20 ◽  
Author(s):  
I. Marx ◽  
I. Badirou ◽  
R. Pendu ◽  
O. Christophe ◽  
C. V. Denis

SummaryVon Willebrand factor (VWF) structure-function relationship has been studied only through in vitro approaches. The VWF-deficient mouse model has been extremely useful to examine the in vivo function of VWF but does not allow a more subtle analysis of the relative importance of its different domains. However, considering the large size of VWF and its capacity to interact with various ligands in order to support platelet adhesion and aggregation, the necessity to evaluate independently these interactions appeared increasingly crucial. A recently developed technique, known as hydrodynamic injection, which allows transient expression of a transgene by mouse hepatocytes, proved very useful in this regard. Indeed, transient expression of various VWF mutants in VWF-deficient mice contributed to improve our knowledge about the role of VWF interaction with subendothelial collagens and with platelets receptors in VWF roles in haemostasis and thrombosis. These findings can provide new leads in the development of anti-thrombotic therapies.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii230-ii230
Author(s):  
James Clerkin ◽  
Kate Connor ◽  
Kieron Sweeney ◽  
Kieron White ◽  
Liam Shiels ◽  
...  

Abstract GBM is a devastating disease with peak incidence in the seventh decade. Pre-clinical models are essential for studying resistance mechanisms and screening novel therapies. However, historically these models have failed to predict response in humans. Current models seldom incorporate surgical resection, and commonly use young animals whose immune contexture differs from older patients. Here, we have established an orthotopic model employing the syngeneic mesenchymal-NFpp10a-cell line which incorporates surgical resection in aged mice. We further characterise response to ICI and temozolomide monotherapy. NFpp10a and GL261-cell lines were exposed in vitro to irradiation (0Gy/2Gy/5Gy) and response assessed using colony formation assays. NFpp10a formed significantly more colonies at 5Gy compared to GL261 at both day 10 (NFpp10a 5.167 vs GL261 1.4; p=0.0017) and day 14 (NFpp10a 3.5 vs GL261 0; p< 0.0001). Hence, NFpp10a displays increased radioresistance. Next, NFpp10a-luciferin expressing cells were orthotopically implanted into young (6-8weeks;n=16) and aged (18months;n=16) C57BL/6-mice. Weekly bioluminescence imaging (BLI) was performed to monitor growth. Mice undergoing resection showed a median 18.47-fold drop in BLI signal. We demonstrated resection survival advantage in aged mice (Resection:33.5 days vs Non-Resection:18 days, p= 0.0166) and showed young age to be a positive prognostic factor (Young:62 days vs Aged:22 days, p=0.0002). Subsequently, we orthotopically implanted NFpp10a-Luc2 cells into C57BL/6 mice and treated with temozolomide (n=24) or PBS control (n=23), and anti-PD1 (n=24) or IgG (n=23). We observed that temozolomide and anti-PD1 monotherapy had no impact on NFpp10-Luc2 growth (temozolomide-overall:p=0.9001, anti-PD1-overall:p=0.7933) or survival (temozolomide-overall:p=0.3035, anti-PD1-overall:p=0.6328). Overall, we have established an NFpp10-Luc2 mesenchymal-GBM model in aged mice which incorporates surgical resection and accurately displays significant resistance to temozolomide and anti-PD1 monotherapy. We are currently employing this model to study the efficacy of neoadjuvant anti-PD1 therapy. Mechanistic analyses with multiplex-immunohistochemistry, scRNA and whole exome sequencing are planned to interrogate treatment effects on the tumor microenvironment.


2021 ◽  
Vol 22 (13) ◽  
pp. 6837
Author(s):  
Pauline Rozier ◽  
Marie Maumus ◽  
Claire Bony ◽  
Alexandre Thibault Jacques Maria ◽  
Florence Sabatier ◽  
...  

Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 392.2-392
Author(s):  
S. Soldano ◽  
P. Montagna ◽  
E. Gotelli ◽  
S. Tardito ◽  
S. Paolino ◽  
...  

Background:Fibroblast-to-myofibroblast transition is one of the fundamental steps involved in the fibrotic process that characterise systemic sclerosis (SSc) [1]. Myofibroblasts are α-smooth muscle actin (αSMA) positive cells that contribute to fibrosis through the excessive synthesis and deposition of extracellular matrix (ECM) proteins, primarily fibronectin (FN) and type I collagen (COL1) [2].Among the cells involved in the fibrotic process of SSc, circulating fibrocytes seem to have an emerging role as an important source of fibroblasts and myofibroblasts [3].Nintedanib is a tyrosine kinase inhibitor approved for the treatment of idiopathic pulmonary fibrosis that interferes with the signalling pathways involved in the pathogenesis of fibrosis (4). Nintedanib was recently demonstrated to have a beneficial effect in patients with interstitial lung disease (ILD) associated with SSc (5).Objectives:To investigate nintedanib effect in inhibiting the in vitro transition of circulating SSc fibrocytes into myofibroblasts and their pro-fibrotic activity.Methods:Circulating fibrocytes were obtained from 14 SSc patients (mean age 64±14 years), who fulfilled the 2013 ACR/EULAR criteria for SSc and that underwent complete disease staging in a day-hospital setting at the Rheumatology Division of Genoa University. Five age-matched healthy subjects (HSs) were also analysed. All SSc patients and HSs signed the informed consent and the local EC approved the study. Peripheral blood mononuclear cells were isolated by density gradient centrifugation and plated on FN-coated dishes. After overnight culture, non-adherent cells were removed, and adherent cells were maintained in growth medium for 8 days (T8) to obtain fibrocytes [6]. T8-cultured SSc fibrocytes were maintained in growth medium (untreated cells) or treated with nintedanib 0.1μM and 1μM for 3 and 24 hours. Fibroblast specific protein-1 (S100A4) and αSMA, as markers of fibroblast/myofibroblast phenotype, together with COL1 and FN, were investigated by qRT-PCR and Western blotting. Non-parametric Mann-Whitney and Wilcoxon tests were used for the statistical analysis.Results:Significantly elevated gene and protein expressions of αSMA, S100A4, COL1 and FN were observed in SSc fibrocytes compared to HS fibrocytes (gene: αSMA p<0.001; others p<0.0001; protein: all p<0.05). In accordance with the antibody positivity for Scl70 and the presence or absence of ILD at CT scan, SSc patients were grouped as either Scl70 positive patients with ILD (Scl70+ILD+) or Scl70 negative patients without ILD (Scl70-ILD-). Significant αSMA, S100A4, COL1 and FN gene expressions were found in fibrocytes from Scl70+ILD+ compared to HS fibrocytes (αSMA p<0.001; others p<0.0001). Moreover, fibrocytes from Scl70+ILD+patients showed a more significant gene expression of fibroblasts/myofibroblasts markers compared to Scl70-ILD-patients (p<0.01 for S100A4), whereas no differences were observed for ECM gene expression.Nintedanib reduced the gene and protein expression of αSMA, COL1 and FN in SSc fibrocytes compared to untreated ones with different statistical significance.Noteworthy, nintedanib significantly downregulated αSMA, S100A4, COL1 and FN gene expression (all p<0.05) in Scl70+ILD+fibrocytes, whereas only that of S100A4 and FN was significantly downregulated (p<0.05) in Scl70-ILD- fibrocytes compared to untreated cells.Conclusion:Nintedanib seems to downregulate in vitro the transition of fibrocytes into myofibroblasts and their pro-fibrotic activity, particularly in cells isolated from Scl70+ILD+SSc patients.References:[1]Cutolo M et al. Exp Rev Clin Immunol. 2019;15:753-64.[2]Van Caam A et al. Front. Immunol. 2018;9:2452.doi:10.3389/fimmu.2018.02452.[3]Distler JH et al. Arthritis Rheumatol. 2017;69:257-67.[4]Distler O et al. New Eng J Med. 2019; 380:2518-28.[5]Maher TB et al. Arthritis Rheumatol.2020.doi:10.1002/art.41576.[6]Cutolo M et al. Arthritis Res Ther. 2018;20:157.doi:10.1186/s13075-018-1652-6.Acknowledgements:We thank Stefano-Lutz Willing for the scientific support through the study.Disclosure of Interests:Stefano Soldano: None declared, Paola Montagna: None declared, Emanuele Gotelli: None declared, Samuele Tardito: None declared, Sabrina Paolino: None declared, Claudio Corallo: None declared, Carmen Pizzorni: None declared, Alberto Sulli: None declared, Carlotta Schenone: None declared, Greta Pacini: None declared, Vanessa Smith: None declared, Maurizio Cutolo Grant/research support from: I received grant/research support from Bristol-Myers Squibb, Boehringer, Celgene


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1334
Author(s):  
Ye Liu ◽  
Zahra Mohri ◽  
Wissal Alsheikh ◽  
Umber Cheema

The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.


Sign in / Sign up

Export Citation Format

Share Document