scholarly journals STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability upon heat stress in ryegrass

2021 ◽  
Author(s):  
Jing Zhang ◽  
Hui Li ◽  
Xinru Huang ◽  
Jing Xing ◽  
Jiaming Yao ◽  
...  

Chlorophyll (Chl) loss is one of the most visible symptoms of heat-induced leaf senescence, especially for cool-season grass species. Suppression of the Chl a Me-dechelatase gene, SGR (also named as nye1), blocked the degradation of Chl a and resulted in the 'stay-green' trait during leaf senescence. However, effect of Chl a catabolism on plant tolerance to long-term moderate heat stress (35-40?) remains unclear. In this study, we suppressed the expression of Chl a catabolic gene, LpSGR, in both constitutive and inducible manners in perennial ryegrass. Constitutive suppression of LpSGR aggravated heat stress-induced chloroplast structure and photosystem damages, disrupted energy utilization/dissipation during photosynthesis, activated ROS generation with weakened ROS-scavenging enzyme activities. Transcriptome comparison among wildtype (WT) and transgenic RNAi plants under either the optimum or high temperature conditions also emphasized the effect of Chl a catabolism on expression of genes encoding photosynthesis system, ROS-generation and scavenging system, and heat shock transcription factors. Furthermore, making use of a modified ethanol-inducible system, we generated stable transgenic perennial ryegrass to suppress LpSGR in an inducible manner. Without ethanol induction, these transgenic lines exhibited the same growth and heat tolerance traits to WT, while under the induction of ethanol spray, the transgenic lines also showed compromised heat tolerance. Taken together, our data suggest that Chl a catabolism is critical for energy dissipation and electron transfer in photosynthesis, ROS-balancing and chloroplast membrane system stability upon long-term moderate heat stress.

Author(s):  
Kazuho Isono ◽  
Ryo Tsukimoto ◽  
Satoshi Iuchi ◽  
Akihisa Shinozawa ◽  
Izumi Yotsui ◽  
...  

Abstract Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screening for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L- but not S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2, and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1–1 mutants was similar to that of the wild type. Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the wild type. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1)—accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins—were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not bZIP28, resulting in initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER–Golgi vesicle tethering.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5337
Author(s):  
Cheng Huang ◽  
Yulong Tian ◽  
Bingbing Zhang ◽  
Muhammad Jawad Hassan ◽  
Zhou Li ◽  
...  

Chitosan (CTS) is a deacetylated derivative of chitin that is involved in adaptive response to abiotic stresses. However, the regulatory role of CTS in heat tolerance is still not fully understood in plants, especially in grass species. The aim of this study was to investigate whether the CTS could reduce heat-induced senescence and damage to creeping bentgrass associated with alterations in antioxidant defense, chlorophyll (Chl) metabolism, and the heat shock pathway. Plants were pretreated exogenously with or without CTS (0.1 g L−1) before being exposed to normal (23/18 °C) or high-temperature (38/33 °C) conditions for 15 days. Heat stress induced detrimental effects, including declines in leaf relative water content and photochemical efficiency, but significantly increased reactive oxygen species (ROS) accumulation, membrane lipid peroxidation, and Chl loss in leaves. The exogenous application of CTS significantly alleviated heat-induced damage in creeping bentgrass leaves by ameliorating water balance, ROS scavenging, the maintenance of Chl metabolism, and photosynthesis. Compared to untreated plants under heat stress, CTS-treated creeping bentgrass exhibited a significantly higher transcription level of genes involved in Chl biosynthesis (AsPBGD and AsCHLH), as well as a lower expression level of Chl degradation-related gene (AsPPH) and senescence-associated genes (AsSAG12, AsSAG39, Asl20, and Ash36), thus reducing leaf senescence and enhancing photosynthetic performance under heat stress. In addition, the foliar application of CTS significantly improved antioxidant enzyme activities (SOD, CAT, POD, and APX), thereby effectively reducing heat-induced oxidative damage. Furthermore, heat tolerance regulated by the CTS in creeping bentgrass was also associated with the heat shock pathway, since AsHSFA-6a and AsHSP82 were significantly up-regulated by the CTS during heat stress. The potential mechanisms of CTS-regulated thermotolerance associated with other metabolic pathways still need to be further studied in grass species.


2009 ◽  
Vol 134 (6) ◽  
pp. 602-609 ◽  
Author(s):  
Jinpeng Xing ◽  
Yan Xu ◽  
Jiang Tian ◽  
Thomas Gianfagna ◽  
Bingru Huang

Cytokinins have been associated with delaying or suppressing leaf senescence in plants. The objectives of this study were to determine whether the expression of the ipt gene that encodes adenine isopentenyltransferase would delay leaf senescence induced by shade or heat stress in a perennial grass species. Creeping bentgrass (Agrostis stolonifera cv. Penncross) was transformed with ipt isolated from agrobacterium (Agrobacterium tumefaciens) using two gene constructs (SAG12-ipt and HSP18-ipt) designed to activate cytokinin synthesis during shade or heat stress. Whole plants of nine SAG12-ipt transgenic lines and the nontransgenic control plants were incubated in darkness at 20 °C for 20 days. Chlorophyll content of all transgenic lines and the control line decreased after dark treatment, but the decline was less pronounced in transgenic lines. All transgenic lines had higher isopentenyladenine (iP/iPA) content than the control line after 20 days of treatment. In six of the transgenic lines, iP/iPA content remained the same or higher after dark treatment. Whole plants of nine HSP18-ipt transgenic lines and the control plants were incubated at 35 °C for 7 days. Chlorophyll and iP/iPA content declined in the control plants, but the nine transgenic lines had a significantly higher concentration of iP/iPA and were able to maintain chlorophyll content at the prestress level. Our results suggest that expression of SAG12-ipt or HSP18-ipt in creeping bentgrass resulted in increases in cytokinin production, which may have led to the delay and suppression of leaf senescence induced by shade or heat stress.


2022 ◽  
Vol 147 (1) ◽  
pp. 18-24
Author(s):  
Stephanie Rossi ◽  
Bingru Huang

Heat stress symptoms in cool-season plants are characterized by loss of chlorophyll (Chl) and membrane stability, as well as oxidative damage. The objectives of this study were to determine whether foliar application of β-sitosterol, a naturally occurring plant metabolite, may promote heat tolerance by suppressing heat-induced leaf senescence as indicated by the maintenance of healthy turf quality (TQ), and Chl and membrane stability; and to determine its roles in regulating antioxidant metabolism in creeping bentgrass (Agrostis stolonifera). ‘Penncross’ plants were exposed to heat stress (35/30 °C day/night) optimal temperature conditions (nonstressed control, 22/17 °C day/night) for a duration of 28 days in environment-controlled growth chambers. Plants were foliar-treated with β-sitosterol (400 µM) or water only (untreated control) before heat stress, and at 7-day intervals through 28 days of heat stress. Plants treated with β-sitosterol had significantly greater TQ and Chl content, and significantly less electrolyte leakage (EL) than untreated controls at 21 and 28 days of heat stress. Application of β-sitosterol reduced malondialdehyde (MDA) content significantly at 21 and 28 days of heat stress, and promoted the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) from 14 through 28 days of heat stress. β-Sitosterol effectively improved heat tolerance through suppression of leaf senescence in creeping bentgrass exposed to heat stress in association with the alleviation of membrane lipid peroxidation and activation of the enzymatic antioxidant system.


2010 ◽  
Vol 135 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Yali He ◽  
Bingru Huang

Understanding antioxidant mechanisms for heat stress is important for improving heat tolerance in cool-season plant species. The objective of this study was to identify antioxidant enzymes associated with cultivar variations in heat tolerance in kentucky bluegrass (Poa pratensis) by comparing heat responses of activity and isoforms of antioxidant enzymes in two cultivars contrasting in heat tolerance. Plants of heat-tolerant ‘Eagleton’ and heat-sensitive ‘Brilliant’ were exposed to 20 °C (control) or 40 °C (heat stress) for 28 days in growth chambers. Chlorophyll (Chl) a content remained unchanged and Chl b content increased in ‘Eagleton’, while both of them decreased in ‘Brilliant’, and by 28 days, ‘Eagleton’ had significantly higher Chl a and b content than ‘Brilliant’. The activities of superoxide dismutase (SOD) were significantly higher in ‘Eagleton’ than in ‘Brilliant’ by 28 days of heat stress. An isozyme SOD2 was induced early during heat stress in ‘Eagleton’, while isozyme SOD3 degraded, to a lesser extent in ‘Eagleton’ than in ‘Brilliant’. Catalase (CAT) activity significantly increased in ‘Brilliant’ but remained constant in ‘Eagleton’, and ‘Brilliant’ had a significantly higher CAT activity and isozyme CAT1 than ‘Eagleton’ during heat stress. Significant increases in ascorbate peroxidase (APX) activities occurred under heat stress, to a greater extent in ‘Eagleton’, whereas isozymes did not exhibit difference between cultivars. Guaiacol-peroxidase (POD) activity declined during heat stress in both cultivars. The intensity of POD isozymes in ‘Brilliant’ remained constant, while ‘Eagleton’ showed a transient increases in POD1 at 7 days of heat stress. Our results indicated that antioxidant defense mechanisms for heat tolerance in kentucky bluegrass could be mainly associated with changes in activity and forms of isozymes of SOD for O2 scavenging and APX activity for H2O2 scavenging under heat stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Shah Jahan ◽  
Sheng Shu ◽  
Yu Wang ◽  
Md. Mahadi Hasan ◽  
Ahmed Abou El-Yazied ◽  
...  

Heat stress and abscisic acid (ABA) induce leaf senescence, whereas melatonin (MT) and gibberellins (GA) play critical roles in inhibiting leaf senescence. Recent research findings confirm that plant tolerance to diverse stresses is closely associated with foliage lifespan. However, the molecular mechanism underlying the signaling interaction of MT with GA and ABA regarding heat-induced leaf senescence largely remains undetermined. Herein, we investigated putative functions of melatonin in suppressing heat-induced leaf senescence in tomato and how ABA and GA coordinate with each other in the presence of MT. Tomato seedlings were pretreated with 100 μM MT or water and exposed to high temperature (38/28°C) for 5 days (d). Heat stress significantly accelerated senescence, damage to the photosystem and upregulation of reactive oxygen species (ROS), generating RBOH gene expression. Melatonin treatment markedly attenuated heat-induced leaf senescence, as reflected by reduced leaf yellowing, an increased Fv/Fm ratio, and reduced ROS production. The Rbohs gene, chlorophyll catabolic genes, and senescence-associated gene expression levels were significantly suppressed by MT addition. Exogenous application of MT elevated the endogenous MT and GA contents but reduced the ABA content in high-temperature-exposed plants. However, the GA and ABA contents were inhibited by paclobutrazol (PCB, a GA biosynthesis inhibitor) and sodium tungstate (ST, an ABA biosynthesis inhibitor) treatment. MT-induced heat tolerance was compromised in both inhibitor-treated plants. The transcript abundance of ABA biosynthesis and signaling genes was repressed; however, the biosynthesis genes MT and GA were upregulated in MT-treated plants. Moreover, GA signaling suppressor and catabolic gene expression was inhibited, while ABA catabolic gene expression was upregulated by MT application. Taken together, MT-mediated suppression of heat-induced leaf senescence has collaborated with the activation of MT and GA biosynthesis and inhibition of ABA biosynthesis pathways in tomato.


Author(s):  
Gaëtan Touzy ◽  
Stéphane Lafarge ◽  
Elise Redondo ◽  
Vincent Lievin ◽  
Xavier Decoopman ◽  
...  

Abstract Key message The response of a large panel of European elite wheat varieties to post-anthesis heat stress is influenced by 17 QTL linked to grain weight or the stay-green phenotype. Abstract Heat stress is a critical abiotic stress for winter bread wheat (Triticum aestivum L.) especially at the flowering and grain filling stages, limiting its growth and productivity in Europe and elsewhere. The breeding of new high-yield and stress-tolerant wheat varieties requires improved understanding of the physiological and genetic bases of heat tolerance. To identify genomic areas associated with plant and grain characteristics under heat stress, a panel of elite European wheat varieties (N = 199) was evaluated under controlled conditions in 2016 and 2017. A split-plot design was used to test the effects of high temperature for ten days after flowering. Flowering time, leaf chlorophyll content, the number of productive spikes, grain number, grain weight and grain size were measured, and the senescence process was modeled. Using genotyping data from a 280 K SNP chip, a genome-wide association study was carried out to test the main effect of each SNP and the effect of SNP × treatment interaction. Genotype × treatment interactions were mainly observed for grain traits measured on the main shoots and tillers. We identified 10 QTLs associated with the main effect of at least one trait and seven QTLs associated with the response to post-anthesis heat stress. Of these, two main QTLs associated with the heat tolerance of thousand-kernel weight were identified on chromosomes 4B and 6B. These QTLs will be useful for breeders to improve grain yield in environments where terminal heat stress is likely to occur.


2007 ◽  
Vol 132 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Yan Xu ◽  
Bingru Huang

Leaf senescence can be induced by many environmental stresses, including supraoptimal temperatures. The objectives of this study were to evaluate leaf senescence induced by heat stress for two Agrostis species contrasting in heat tolerance and to examine whether heat-induced leaf senescence in both species was associated with changes in three major senescence-related hormones: ethylene, abscisic acid (ABA), and cytokinins. Plants of heat-tolerant rough bentgrass (Agrostis scabra Willd.) and heat-sensitive creeping bentgrass (Agrostis stolonifera L.) were exposed to 35/30 °C (day/night) (high temperature) or 20/15 °C (control) for 35 d in growth chambers. Turf quality, photochemical efficiency (Fv/Fm), and the contents of two pigments (chlorophyll and carotenoid) for both species decreased under high temperature; however, heat-tolerant A. scabra exhibited delayed and less severe decline in all parameters compared with heat-sensitive A. stolonifera. Ethylene production rate increased in both species at 35 °C, but the increase was observed 21 days later in A. scabra compared with that in A. stolonifera. ABA content increased at the initiation of heat stress and then declined in both species after prolonged heat stress. However, the timing of the increase was delayed for 7 days and the highest level of ABA content was less in A. scabra (4.0 times that of the control) than that in A. stolonifera (5.9 times that of the control). Decreases in both forms of cytokinins (transzeatin/zeatin riboside and isopentenyl adenosine) were also delayed for 14 days and less pronounced in A. scabra. Correlation analysis revealed that leaf senescence induced by heat stress was negatively correlated to ethylene and ABA accumulation and positively correlated to cytokinin production. Delayed leaf senescence in A. scabra under heat stress could be related to slower and less magnitude of changes in ethylene, ABA, and cytokinins.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11782
Author(s):  
Wagdi S. Soliman ◽  
Ahmed M. Abbas ◽  
Stephen J. Novak ◽  
Masahiro Fujimori ◽  
Kazuhiro Tase ◽  
...  

Background Heat stress is considered one of the most important environmental factors influencing plant physiology, growth, development, and reproductive output. The occurrence and damage caused by heat stress will likely increase with global climate change. Thus, there is an urgent need to better understand the genetic basis of heat tolerance, especially in cool season plants. Materials and Methods In this study, we assessed the inheritance of heat tolerance in perennial ryegrass (Lolium perenne L. subspecies perenne) , a cool season grass, through a comparison of two parental cultivars with their offspring. We crossed plants of a heat tolerant cultivar (Kangaroo Valley) with plants of a heat sensitive cultivar (Norlea), to generate 72 F1 hybrid progeny arrays. Both parents and their progeny were then exposed to heat stress for 40 days, and their photosynthetic performance (Fv/Fm values) and leaf H2O2 content were measured. Results As expected, Kangaroo Valley had significantly higher Fv/Fm values and significantly lower H2O2 concentrations than Norlea. For the F1 progeny arrays, values of Fv/Fm decreased gradually with increasing exposure to heat stress, while the content of H2O 2 increased. The progeny had a wide distribution of Fv/Fm and H 2O2 values at 40 days of heat stress. Approximately 95% of the 72 F1 progeny arrays had Fv/Fm values that were equal to or intermediate to the values of the two parental cultivars and 68% of the progeny arrays had H2O2 concentrations equal to or intermediate to their two parents. Conclusion Results of this study indicate considerable additive genetic variation for heat tolerance among the 72 progeny arrays generated from these crosses, and such diversity can be used to improve heat tolerance in perennial ryegrass cultivars. Our findings point to the benefits of combining physiological measurements within a genetic framework to assess the inheritance of heat tolerance, a complex plant response.


Sign in / Sign up

Export Citation Format

Share Document