scholarly journals JADE family proteins regulate proteasome abundance and activity

2021 ◽  
Author(s):  
Lena Kathrin Ebert ◽  
Sebastian Bargfrede ◽  
Katrin Bohl ◽  
Roman-Ulrich Mueller ◽  
Thomas Benzing ◽  
...  

JADE family proteins (JADE1/2/3) have been implicated in diverse cellular functions and signaling pathways ranging from WNT signaling and cell cycle control to cell death and complex transcriptional regulation through histone acetyl-transferase complexes. JADE proteins show a high degree of sequence similarity and share two PHD zinc finger domains. JADE1 interacts with cilia-associated proteins and has been implicated in cilia-related genetic disorders with kidney phenotypes. However, the function of the widely expressed JADE proteins at the molecular level is still elusive. Here we show that JADE proteins regulate proteasome abundance and activity. Using kidney cells as a model, we demonstrate that loss of either JADE protein resulted in increased expression of almost all components of the 26S proteasome. Regulation occurred at the post-translational level and was not the consequence of transcriptional activation. Consistent with a role for JADE proteins in regulating overall proteasomal abundance, proteasomal activity was elevated in Jade-deficient cells, while exogenous expression of JADE1/2/3 decreased the level of proteasome activity. Coimmunoprecipitation experiments confirmed the interaction of proteasomal subunits with Jade1 suggesting a direct role of JADE proteins in regulating turnover, stability and abundance of the 26s proteasome. These data may now explain the plethora of cellular roles that have been attributed to JADE proteins.

2020 ◽  
Vol 375 (1801) ◽  
pp. 20190397 ◽  
Author(s):  
Karin Krupinska ◽  
Nicolás E. Blanco ◽  
Svenja Oetke ◽  
Michela Zottini

An increasing number of eukaryotic proteins have been shown to have a dual localization in the DNA-containing organelles, mitochondria and plastids, and/or the nucleus. Regulation of dual targeting and relocation of proteins from organelles to the nucleus offer the most direct means for communication between organelles as well as organelles and nucleus. Most of the mitochondrial proteins of animals have functions in DNA repair and gene expression by modelling of nucleoid architecture and/or chromatin. In plants, such proteins can affect replication and early development. Most plastid proteins with a confirmed or predicted second location in the nucleus are associated with the prokaryotic core RNA polymerase and are required for chloroplast development and light responses. Few plastid–nucleus-located proteins are involved in pathogen defence and cell cycle control. For three proteins, it has been clearly shown that they are first targeted to the organelle and then relocated to the nucleus, i.e. the nucleoid-associated proteins HEMERA and Whirly1 and the stroma-located defence protein NRIP1. Relocation to the nucleus can be experimentally demonstrated by plastid transformation leading to the synthesis of proteins with a tag that enables their detection in the nucleus or by fusions with fluoroproteins in different experimental set-ups. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.


1989 ◽  
Vol 9 (12) ◽  
pp. 5331-5339 ◽  
Author(s):  
R Herrera ◽  
H S Ro ◽  
G S Robinson ◽  
K G Xanthopoulos ◽  
B M Spiegelman

Adipocyte differentiation is accompanied by the transcriptional activation of many new genes, including the gene encoding adipocyte P2 (aP2), an intracellular lipid-binding protein. Using specific deletions and point mutations, we have shown that at least two distinct sequence elements in the aP2 promoter contribute to the expression of the chloramphenicol acetyltransferase gene in chimeric constructions transfected into adipose cells. An AP-I site at -120, shown earlier to bind Jun- and Fos-like proteins, serves as a positive regulator of chloramphenicol acetyltransferase gene expression in adipocytes but is specifically silenced by adjacent upstream sequences in preadipocytes. Sequences upstream of the AP-I site at -140 (termed AE-1) can function as an enhancer in both cell types when linked to a viral promoter but can stimulate expression only in fat cells in the intact aP2 promoter. The AE-1 sequence binds an adipocyte protein identical or very closely related to an enhancer-binding protein (C/EBP) that has been previously implicated in the regulation of several liver-specific genes. A functional role for C/EBP in the regulation of the aP2 gene is indicated by the facts that C/EBP mRNA is induced during adipocyte differentiation and the aP2 promoter is transactivated by cotransfection of a C/EBP expression vector into preadipose cells. These results indicate that sequences that bind C/EBP and the Fos-Jun complex play major roles in the expression of the aP2 gene during adipocyte differentiation and demonstrate that C/EBP can directly regulate cellular gene expression.


2000 ◽  
Vol 15 (1) ◽  
pp. 26-32 ◽  
Author(s):  
M. Cattaneo ◽  
R. Orlandi ◽  
C. Ronchini ◽  
P. Granelli ◽  
G. Malferrari ◽  
...  

We have previously reported on the isolation and chromosomal mapping of a novel human gene (SEL1L), which shows sequence similarity to sel-1, an extragenic suppressor of C. elegans. sel-1 functions as a negative regulator of lin-12 activity, the latter being implicated in the control of diverse cellular differentiation events. In the present study we compare the expression patterns of SEL1L and TAN-1, the human ortholog of lin-12 in normal and neoplastic cells. We found that, whereas both genes are expressed in fetal tissues at similar levels, they are differentially expressed in normal adult and neoplastic cells. In normal adult cells SEL1L is generally present at very low levels; only in the cells of the pancreas does it show maximum expression. By contrast, SEL1L is generally well represented in most neoplastic cells but not in those of pancreatic and gastric carcinomas, where transcription is either downregulated or completely repressed. TAN-1 on the other hand is well represented in almost all normal and neoplastic cells, with very few exceptions. Our observations suggest that SEL1L is presumably implicated in pancreatic and gastric carcinogenesis and that, along with TAN-1, it is very important for normal cell function. Alterations in the expression of SEL1L may be used as a prognostic marker for gastric and pancreatic cancers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maxime Boutry ◽  
Peter K. Kim

AbstractMitochondrial division is not an autonomous event but involves multiple organelles, including the endoplasmic reticulum (ER) and lysosomes. Whereas the ER drives the constriction of mitochondrial membranes, the role of lysosomes in mitochondrial division is not known. Here, using super-resolution live-cell imaging, we investigate the recruitment of lysosomes to the site of mitochondrial division. We find that the ER recruits lysosomes to the site of division through the interaction of VAMP-associated proteins (VAPs) with the lysosomal lipid transfer protein ORP1L to induce a three-way contact between the ER, lysosome, and the mitochondrion. We also show that ORP1L might transport phosphatidylinositol-4-phosphate (PI(4)P) from lysosomes to mitochondria, as inhibiting its transfer or depleting PI(4)P at the mitochondrial division site impairs fission, demonstrating a direct role for PI(4)P in the division process. Our findings support a model where the ER recruits lysosomes to act in concert at the fission site for the efficient division of mitochondria.


2019 ◽  
Vol 476 (21) ◽  
pp. 3401-3411 ◽  
Author(s):  
Lukas Uhrik ◽  
Lixiao Wang ◽  
Lucia Haronikova ◽  
Ixaura Medina-Medina ◽  
Yolanda Rebolloso-Gomez ◽  
...  

Allosteric changes imposed by post-translational modifications regulate and differentiate the functions of proteins with intrinsic disorder regions. HDM2 is a hub protein with a large interactome and with different cellular functions. It is best known for its regulation of the p53 tumour suppressor. Under normal cellular conditions, HDM2 ubiquitinates and degrades p53 by the 26S proteasome but after DNA damage, HDM2 switches from a negative to a positive regulator of p53 by binding to p53 mRNA to promote translation of the p53 mRNA. This change in activity is governed by the ataxia telangiectasia mutated kinase via phosphorylation on serine 395 and is mimicked by the S395D phosphomimetic mutant. Here we have used different approaches to show that this event is accompanied by a specific change in the HDM2 structure that affects the HDM2 interactome, such as the N-termini HDM2–p53 protein–protein interaction. These data will give a better understanding of how HDM2 switches from a negative to a positive regulator of p53 and gain new insights into the control of the HDM2 structure and its interactome under different cellular conditions and help identify interphases as potential targets for new drug developments.


2021 ◽  
Author(s):  
Sara Artigas-Jerónimo ◽  
Margarita Villar ◽  
Agustín Estrada-Peña ◽  
Adrián Velázquez-Campoy ◽  
Pilar Alberdi ◽  
...  

The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In this study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple biological processes with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Parul Pal ◽  
Malvika Modi ◽  
Shashank Ravichandran ◽  
Ragothaman M. Yennamalli ◽  
Richa Priyadarshini

Nucleoid-associated proteins (NAPs) or histone-like proteins (HLPs) are DNA-binding proteins present in bacteria that play an important role in nucleoid architecture and gene regulation. NAPs affect bacterial nucleoid organization via DNA bending, bridging, or forming aggregates. EbfC is a nucleoid-associated protein identified first in Borrelia burgdorferi, belonging to YbaB/EbfC family of NAPs capable of binding and altering DNA conformation. YbaB, an ortholog of EbfC found in Escherichia coli and Haemophilus influenzae, also acts as a transcriptional regulator. YbaB has a novel tweezer-like structure and binds DNA as homodimers. The homologs of YbaB are found in almost all bacterial species, suggesting a conserved function, yet the physiological role of YbaB protein in many bacteria is not well understood. In this study, we characterized the YbaB/EbfC family DNA-binding protein in Caulobacter crescentus. C. crescentus has one YbaB/EbfC family gene annotated in the genome (YbaBCc) and it shares 41% sequence identity with YbaB/EbfC family NAPs. Computational modeling revealed tweezer-like structure of YbaBCc, a characteristic of YbaB/EbfC family of NAPs. N-terminal–CFP tagged YbaBCc localized with the nucleoid and is able to compact DNA. Unlike B. burgdorferi EbfC protein, YbaBCc protein is a non-specific DNA-binding protein in C. crescentus. Moreover, YbaBCc shields DNA against enzymatic degradation. Collectively, our findings reveal that YbaBCc is a small histone-like protein and may play a role in bacterial chromosome structuring and gene regulation in C. crescentus.


2020 ◽  
Author(s):  
Thomas Meul ◽  
Korbinian Berschneider ◽  
Sabine Schmitt ◽  
Christoph H. Mayr ◽  
Laura F. Mattner ◽  
...  

SummaryThe proteasome is the main proteolytic system for targeted protein degradation in the cell. Its function is fine-tuned according to cellular needs. Regulation of proteasome function by mitochondrial metabolism, however, is unknown.Here, we demonstrate that mitochondrial dysfunction reduces the assembly and activity of the 26S proteasome in the absence of oxidative stress. Impaired respiratory complex I function leads to metabolic reprogramming of the Krebs cycle and deficiency in aspartate. Aspartate supplementation activates assembly and activity of 26S proteasomes via transcriptional activation of the proteasome assembly factors p28 and Rpn6. This metabolic adaptation of 26S proteasome function involves sensing of aspartate via the mTORC1 pathway. Metformin treatment of primary human cells similarly reduced assembly and activity of 26S proteasome complexes, which was fully reversible and rescued by supplementation of aspartate or pyruvate. Of note, respiratory dysfunction conferred resistance towards the proteasome inhibitor Bortezomib.Our study uncovers a fundamental novel mechanism of how mitochondrial metabolism adaptively adjusts protein degradation by the proteasome. It thus unravels unexpected consequences of defective mitochondrial metabolism in disease or drug-targeted mitochondrial reprogramming for proteasomal protein degradation in the cell. As metabolic inhibition of proteasome function can be alleviated by treatment with aspartate or pyruvate, our results also have therapeutic implications.


1987 ◽  
Vol 7 (1) ◽  
pp. 504-511 ◽  
Author(s):  
J Hindley ◽  
G Phear ◽  
M Stein ◽  
D Beach

Sucl+ was originally identified as a DNA sequence that, at high copy number, rescued Schizosaccharomyces pombe strains carrying certain temperature-sensitive alleles of the cdc2 cell cycle control gene. We determined the nucleotide sequence of a 1,083-base-pair Sucl+ DNA fragment and S1 mapped its 866-nucleotide RNA transcript. The protein-coding sequence of the gene is interrupted by two intervening sequences of 115 and 51 base pairs. The predicted translational product of the gene is a protein of 13 kilodaltons. A chromosomal gene disruption of Sucl+ was constructed in a diploid S. pombe strain. Germinating spores carrying a null allele of the gene were capable of very limited cell division, following which many cells became highly elongated. The Sucl+ gene was also strongly overexpressed under the control of a heterologous S. pombe promoter. Overexpression of Sucl+ is not lethal but causes a division delay such that cells are approximately twice the normal length at division. These data suggest that Sucl+ encodes a protein which plays a direct role in the cell division cycle of S. pombe.


Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 152
Author(s):  
Hirotaka Takahashi ◽  
Satoshi Yamanaka ◽  
Shohei Kuwada ◽  
Kana Higaki ◽  
Kohki Kido ◽  
...  

Protein ubiquitinations play pivotal roles in many cellular processes, including homeostasis, responses to various stimulations, and progression of diseases. Deubiquitinating enzymes (DUBs) remove ubiquitin molecules from ubiquitinated proteins and cleave the polyubiquitin chain, thus negatively regulating numerous ubiquitin-dependent processes. Dysfunctions of many DUBs reportedly cause various diseases; therefore, DUBs are considered as important drug targets, although the biochemical characteristics and cellular functions of many DUBs are still unclear. Here, we established a human DUB protein array to detect the activity and linkage specificity of almost all human DUBs. Using a wheat cell-free protein synthesis system, 88 full-length recombinant human DUB proteins were prepared and termed the DUB array. In vitro DUB assays were performed with all of these recombinant DUBs, using eight linkage types of diubiquitins as substrates. As a result, 80 DUBs in the array showed DUB activities, and their linkage specificities were determined. These 80 DUBs included many biochemically uncharacterized DUBs in the past. In addition, taking advantage of these active DUB proteins, we applied the DUB array to evaluate the selectivities of DUB inhibitors. We successfully developed a high-throughput and semi-quantitative DUB assay based on AlphaScreen technology, and a model study using two commercially available DUB inhibitors revealed individual selectivities to 29 DUBs, as previously reported. In conclusion, the DUB array established here is a powerful tool for biochemical analyses and drug discovery for human DUBs.


Sign in / Sign up

Export Citation Format

Share Document