scholarly journals miR-199-3p Suppresses Cellular Migration and Viability and Promotes Progesterone Production in Goose Ovarian Follicles Before Selection by Targeting ITGB8 and Regulating Other ECM-related Genes

2021 ◽  
Author(s):  
Qin Li ◽  
Keshan Zhang ◽  
Xianzhi Zhao ◽  
Jing Li ◽  
Youhui Xie ◽  
...  

ABSTRACTThe extracellular matrix (ECM) constitutes the follicular basal lamina and is also present between follicular cells. Remodeling of the ECM is believed to be a key event in follicular development, especially follicular selection, and plays important roles in cell migration, survival, and steroidogenesis. miR-199-3p is differentially expressed in the goose follicular granulosa layer during follicular selection and is reported to play a primary role in inhibiting cell migration and invasion. Nevertheless, the effect of miR-199-3p on ovarian follicles and its role in follicular cellular migration are not understood. In this study, we demonstrated by qRT-PCR that miR-199-3p was differentially expressed in the granulosa layer from goose ovarian follicles before and after follicular selection. Additionally, we found that miR-199-3p overexpression could significantly suppress cell viability and migration, as well as elevate both the concentration of progesterone and the expression of key progesterone production genes in cultured granulosa cells (GCs) from goose pre-hierarchical follicles. Furthermore, using dual-fluorescence reporter experiments on 293T cells, we confirmed that miR-199-3p downregulated the expression of the ECM gene ITGB8 by directly targeting its mRNA three prime untranslated region (3′ UTR). Finally, we found that miR-199-3p overexpression in the GCs of goose pre-hierarchical follicles inhibited the expression of two ECM-related genes (MMP9 and MMP15) yet promoted the expression of another two ECM-related genes (COL4A1 and LAMA1). Taken together, these findings suggest that miR-199-3p participates in granulosa cell migration, viability, and steroidogenesis in goose ovarian follicles before selection by targeting ITGB8 and modulating other ECM-related genes. These data highlight the key roles of miR-199-3p in follicular cell migration, viability, and steroidogenesis by regulating ECM-related genes and thus contribute to a better understanding of the mechanisms underlying follicle selection in birds.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256646
Author(s):  
Harsha Nagar ◽  
Seonhee Kim ◽  
Ikjun Lee ◽  
Su-Jeong Choi ◽  
Shuyu Piao ◽  
...  

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


2005 ◽  
Vol 79 (24) ◽  
pp. 15430-15442 ◽  
Author(s):  
Dirk M. Pegtel ◽  
Aravind Subramanian ◽  
Tzung-Shiahn Sheen ◽  
Ching-Hwa Tsai ◽  
Todd R. Golub ◽  
...  

ABSTRACT Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGα6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGα6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGα6 protein levels are increased in the migrating cells. Blocking antibodies against ITGα6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGα6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression.


Author(s):  
Russell J. Ledet ◽  
Sophie Ruff ◽  
Yu Wang ◽  
Shruti Nayak ◽  
Jeffrey A. Schneider ◽  
...  

ABSTRACTPIM1 is an oncogenic serine/threonine kinase that promotes and maintains prostate tumorigenesis. To more fully understand the mechanism by which PIM1 promotes oncogenesis, we performed a chemical genetic screen to identify direct PIM1 substrates in prostate cancer cells. The PIM1 substrates we identified were involved in a variety of oncogenic processes, and included N-Myc Downstream-Regulated Gene 1 (NDRG1), which has reported roles in the suppression of cancer cell invasion and metastasis. NDRG1 is phosphorylated by PIM1 at serine 330 (pS330), and the level of NDRG1 pS330 is associated with high grade compared to low grade prostate tumors. While NDRG1 pS330 is largely cytoplasmic, total NDRG1 is both cytoplasmic and nuclear. Mechanistically, PIM1 phosphorylation of NDRG1 decreases its stability, reducing its interaction with AR, and thereby lowering expression of AR target genes. PIM1-dependent NDRG1 phosphorylation also reduces NDRG1’s ability to suppress prostate cancer cell migration and invasion. Our study identifies a novel set of PIM1 substrates in prostate cancer cells using a direct, unbiased chemical genetic screen. It also provides key insights into the mechanisms by which PIM1-mediated phosphorylation of NDRG1 impairs its function, resulting in enhanced cell migration and invasion.


2021 ◽  
Author(s):  
Xu Jiayuan ◽  
Li Bangliang ◽  
Song Wei ◽  
Cao Longhe ◽  
Zhu Chuansai ◽  
...  

Abstract Background: Nasopharyngeal carcinoma (NPC) development involves many genetic alterations. This study profiled differentially expressed miRNAs and selected miR-375 for further study.Methods: Differentially expressed miRNAs (DE-miRNAs) were screened using online databases and subjected to various analyses. miR-375 mimics with negative control cDNA, and ubiquitin-specific protease 1 (USP1) as well as a vector-only control were transfected into NPC cells for analysis by quantitative PCR, western blotting, wound healing, Transwell, cell viability, flow cytometry, and luciferase gene reporter assays.Results: A total of 308 NPC and 23 normal tissues were analyzed, and 67 DE-miRNAs were identified. Among these, miR-375 was downregulated and miR-21-5p was upregulated. Bioinformatical analysis identified USP1 as a potential target gene of miR-375. Furthermore, miR-375 expression was decreased, whereas USP1 expression was increased in NPC. Increased USP1 expression was associated with poor survival of head and neck cancer patients. The luciferase assay confirmed miR-375 binding to the USP1 3'-untranslated region (UTR), while the transfection experiment confirmed miR-375 expression reduced USP1 expression, and USP1 overexpression reversed the anti-tumor activity of miR-375 in NPC cells, determined by tumor cell migration, invasion, apoptosis, and gene expression. In addition, USP1 overexpression activated phosphoinositide 3-kinase (PI3K) signaling, whereas a selective PI3K inhibitor (S2793) could reverse the effects of USP1 on NPC cells in vitro.Conclusions: This study confirmed decreased miR-375 expression and increased miR-21 expression in NPC tissues. Downregulated miR-375 expression led to USP1 upregulation, which in turn activated PI3K/Akt signaling and promoted NPC cell migration and invasion, but inhibited NPC cell apoptosis.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Su Xie ◽  
Mengxun Li ◽  
Yansen Chen ◽  
Yi Liu ◽  
Lipeng Ma ◽  
...  

Abstract Circular RNAs (circRNAs) are a newly discovered class of endogenous non-coding RNAs that play an important role in growth and development by regulating gene expression and participating in a variety of biological processes. However, the role of circRNAs in porcine follicles remains unclear. Therefore, this study examined middle-sized ovarian follicles obtained from Meishan and Duroc sows at day 4 of the follicular phase. High-throughput RNA sequencing (RNA-seq) was utilized to construct circRNAs, and differential expression was identified. The findings were validated using reverse transcription PCR (RT-PCR) and DNA sequencing, GO and KEGG analyses were performed, and potential miRNA targets were identified. The RNA-seq identified a total of 15,866 circRNAs, with 244 differentially expressed in the Meishan relative to the Duroc (111 up-regulated and 133 down-regulated). The RT-PCR finding confirmed the RNA-seq results, and quantitative real-time PCR (qPCR) analysis examining a subset of the circRNAs showed that they are resistant to RNase R digestion. Bioinformatics analysis (GO and KEGG) showed that the host genes associated with the differentially expressed circRNAs are involved in reproduction and follicular development signaling pathways. Furthermore, many of the circRNAs were found to interact with miRNAs that are associated with follicular development. This study presents a new perspective for studying circRNAs and provides a valuable resource for further examination into the potential roles of circRNAs in porcine follicular development.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3512
Author(s):  
Qi Wang ◽  
Quanwei Zhang ◽  
Yina Li ◽  
Xingxu Zhao ◽  
Yong Zhang

Camelidae are induced ovulators whose ovulation is tightly regulated by multiple factors. Understanding the biological mechanisms underlying follicular development, hormone secretion, and ovulation requires investigating the potential molecular pathways involved. However, little is known about these pathways in Bactrian camels. To screen and identify candidate biomarkers after inducing ovulation, this study performed comprehensive proteomic and molecular biological analyses of the ovaries from two camel groups (n = 6). We identified 5075 expressed ovarian proteins, of which 404 were differentially expressed (264 upregulated, 140 downregulated) (p < 0.05 or p < 0.01), in samples from plasma-induced versus control camels. Gene ontology annotation identified the potential functions of the differentially expressed proteins (DEPs). These results validated the differential expression for a subset of these proteins using Western blot (p < 0.05) and immunofluorescence staining. Three DEPs (FST, NR5A1, and PRL) were involved in neurochemical signal transduction, as well as endocrine and reproductive hormone regulatory processes. The Kyoto Encyclopedia of Genes and Genomes analysis indicated the involvement of several pathways, including the calcium, cAMP, gonadotropin-releasing hormone, MAPK, and neuroactive ligand–receptor signaling pathways, suggesting that induced ovulation depends on the hypothalamic–pituitary–ovarian axis. Identifying these candidate biomarkers enables a better understanding of Bactrian camel reproduction. Ovarian proteomic profiling and the measurement of selected proteins using more targeted methods is a promising approach for studying induced-ovulation mechanisms.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shun-Dong Dai ◽  
Shuang Wang ◽  
Ya-Nan Qin ◽  
Jin-Chao Zhu

Cadmium (Cd) from cigarette smoke and polluted air can lead to lung adenocarcinoma after long-term inhalation. However, most studies are based on short-term exposure to this toxic metal at high concentrations. Here, we investigate the effects of long-term exposure of A549 cells (lung adenocarcinoma) to cadmium at low concentrations using morphological and multiomics analyses. First, we treated A549 cells continuously with CdCl2 at 1μM for 8 months and found that CdCl2 promoted cellular migration and invasion. After that, we applied transmission electron and fluorescence microscopies and did not observe significant morphological changes in Golgi apparatus, endoplasmic reticulum, lysosomes, or mitochondria on Cd treated cells; microfilaments, in contrast, accumulated in lamellipodium and adhesion plaques, which suggested that Cd enhanced cellular activity. Second, by using whole-exome sequencing (WES) we detected 4222 unique SNPs in Cd-treated cells, which included 382 unique non-synonymous mutation sites. The corresponding mutated genes, after GO and KEGG enrichments, were involved mainly in cell adhesion, movement, and metabolic pathways. Third, by RNA-seq analysis, we showed that 1250 genes (784 up and 466 down), 1623 mRNAs (1023 up and 591 down), and 679 lncRNAs (375 up and 304 down) were expressed differently. Furthermore, GO enrichment of these RNA-seq results suggested that most differentially expressed genes were related to cell adhesion and organization of the extracellular matrix in biological process terms; KEGG enrichment revealed that the differentially expressed genes took part in 26 pathways, among which the metabolic pathway was the most significant. These findings could be important for unveiling mechanisms of Cd-related cancers and for developing cancer therapies in the future.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lin Shi ◽  
Huize Liu ◽  
Yifeng Wang ◽  
Yulong Chong ◽  
Jie Wang ◽  
...  

Abstract Background Switch-associated protein 70 (SWAP-70) is a guanine nucleotide exchange factor that is involved in cytoskeletal rearrangement and regulation of migration and invasion of malignant tumors. However, the mechanism by which SWAP-70 regulates the migration and invasion of glioblastoma (GB) cells has not been fully elucidated. Methods This study used an online database to analyze the relationship between SWAP-70 expression and prognosis in GB patients. The in vitro wound healing assay and transwell invasion assay were used to determine the role of SWAP-70 in GB cell migration and invasion as well as the underlying mechanism. Results We found that patients with high SWAP-70 expression in the GB had a poor prognosis. Downregulation of SWAP-70 inhibited GB cell migration and invasion, whereas SWAP-70 overexpression had an opposite effect. Interestingly, SWAP-70 expression was positively correlated with the expression of the standard form of CD44 (CD44s) in GB tissues. Downregulation of SWAP-70 also reduced CD44s protein expression, whereas SWAP-70 overexpression enhanced CD44s protein expression. However, downregulation of SWAP-70 expression did not affect the mRNA expression of CD44s. Reversal experiments showed that overexpressing CD44s in cell lines with downregulated SWAP-70 partially abolished the inhibitory effects of downregulated SWAP-70 on GB cell migration and invasion. Conclusions These results suggest that SWAP-70 may promote GB cell migration and invasion by regulating the expression of CD44s. SWAP-70 may serve as a new biomarker and a potential therapeutic target for GB.


2017 ◽  
Vol 36 (4) ◽  
pp. 273-282 ◽  
Author(s):  
Wiesława Kranc ◽  
Joanna Budna ◽  
Adrian Chachuła ◽  
Sylwia Borys ◽  
Artur Bryja ◽  
...  

2009 ◽  
Vol 21 (9) ◽  
pp. 71
Author(s):  
A. P. Sobinoff ◽  
V. Pye ◽  
B. Nixon ◽  
S. D. Roman ◽  
E. A. McLaughlin

The mammalian female reproductive lifespan is largely defined by a finite pool of ovarian follicles established around the time of birth. It is now understood that certain synthetic chemical compounds, known as xenobiotics, can cause premature ovarian senescence through the destruction of small ovarian follicles. Although the ovotoxic effects of these chemicals are well documented, the exact molecular mechanisms behind their action are only just becoming understood. Recent evidence suggests that bioactivation of xenobiotics by Phase I detoxifying enzymes may lead to the generation of free oxygen radicals (ROS), which we suspect may perturb intracellular signalling pathways in primordial follicles. In this study we attempted to identify ovarian follicle signalling pathways activated by xenobiotic exposure using ovotoxic agents which target immature follicles. Neonatal ovaries obtained from 3/4-day old Swiss mice were exposed to either 4-Vinylcyclohexene (25µM), Methoxychlor (25µM) or Menadione (5µM) for 96hrs using our in vitro culture system. Total RNA was then collected and analysed using Affymetrix Mouse Genome 430 2.0 Arrays. Bioinformatic analysis identified between ~500–1000 genes with a two-fold significant difference in gene expression (p<0.05) for each xenobiotic compared to the control. Differentially expressed genes were analysed for pathways and molecular functions using Ingenuity Pathways Analysis (Ingenuity Systems). In agreement with the current literature, many of the genes belonged to toxic response pathways, such as; Xenobiotic metabolism (10); p53 (15) and Apoptosis (11) signalling. However, the vast majority of the differentially expressed genes belonged to canonical pathways implicated in follicular development, such as PI3K/AKT (18), Wnt/ b -catenin (21), and JAK/Stat (8) signalling. Further qPCR analysis has confirmed a substantial increase in the transcription factor Sox4 and cell cycle inhibitor Cdkn2a in 4-Vinylcyclohexene and Menadione treated ovaries respectively. These results suggest that xenobiotics which target primordial follicles may exert part of their ovotoxic effects by perturbing signalling pathways involved in follicular activation and development.


Sign in / Sign up

Export Citation Format

Share Document