scholarly journals Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform

2021 ◽  
Author(s):  
Santiago Naranjo ◽  
Christina M. Cabana ◽  
Lindsay M. LaFave ◽  
Peter M.K. Westcott ◽  
Rodrigo Romero ◽  
...  

ABSTRACTLung cancer is the leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD), the most common histological subtype, accounts for 40% of all cases. While genetically engineered mouse models (GEMMs) recapitulate the histological progression and transcriptional evolution of human LUAD, they are slow and technically demanding. In contrast, cell line transplant models are fast and flexible, but are often derived from clonal idiosyncratic tumors that fail to capture the full spectrum of clinical disease. Organoid technologies provide a means to create next-generation cancer models that integrate the most relevant features of autochthonous and transplant-based systems, yet robust and faithful LUAD organoid platforms are currently lacking. Here, we describe optimized conditions to continuously expand murine alveolar type 2 cells (AT2), a prominent cell-of-origin for LUAD, in organoid culture. These organoids display canonical features of AT2 cells, including marker gene expression, the presence of lamellar bodies, and an ability to differentiate into the AT1 lineage. We used this system to develop flexible and versatile immunocompetent organoid-based models of KRAS and ALK-mutant LUAD. Notably, the resultant tumors closely resemble their autochthonous murine counterparts and human LUAD. In contrast to comparable organoid platforms, our system supports long-term maintenance of the AT2 cellular identity, providing unprecedented ease and reliability to study AT2 and LUAD biology in vitro and in vivo.

Vaccine ◽  
2008 ◽  
Vol 26 (33) ◽  
pp. 4231-4236 ◽  
Author(s):  
J. Gillespie ◽  
N.M. Juhan ◽  
J. DiCristina ◽  
K.F. Key ◽  
S. Ramamoorthy ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaofan Lai ◽  
Shaojie Huang ◽  
Sijia Lin ◽  
Lvya Pu ◽  
Yaqing Wang ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive deadly fibrotic lung disease with high prevalence and mortality worldwide. The therapeutic potential of mesenchymal stem cells (MSCs) in pulmonary fibrosis may be attributed to the strong paracrine, anti-inflammatory, anti-apoptosis and immunoregulatory effects. However, the mechanisms underlying the therapeutic effects of MSCs in IPF, especially in terms of alveolar type 2 (AT2) cells senescence, are not well understood. The purpose of this study was to evaluate the role of MSCs in NAD metabolism and senescence of AT2 cells in vitro and in vivo. Methods MSCs were isolated from human bone marrow. The protective effects of MSCs injection in pulmonary fibrosis were assessed via bleomycin mouse models. The senescence of AT2 cells co-cultured with MSCs was evaluated by SA-β-galactosidase assay, immunofluorescence staining and Western blotting. NAD+ level and NAMPT expression in AT2 cells affected by MSCs were determined in vitro and in vivo. FK866 and NAMPT shRNA vectors were used to determine the role of NAMPT in MSCs inhibiting AT2 cells senescence. Results We proved that MSCs attenuate bleomycin-induced pulmonary fibrosis in mice. Senescence of AT2 cells was alleviated in MSCs-treated pulmonary fibrosis mice and when co-cultured with MSCs in vitro. Mechanistic studies showed that NAD+ and NAMPT levels were rescued in AT2 cells co-cultured with MSCs and MSCs could suppress AT2 cells senescence mainly via suppressing lysosome-mediated NAMPT degradation. Conclusions MSCs attenuate AT2 cells senescence by upregulating NAMPT expression and NAD+ levels, thus exerting protective effects in pulmonary fibrosis.


2020 ◽  
Author(s):  
Ariel Pribluda ◽  
Anneleen Daemen ◽  
Anthony Lima ◽  
Xi Wang ◽  
Marc Hafner ◽  
...  

AbstractLung development, integrity and repair rely on precise Wnt signaling, which is corrupted in diverse diseases, including cancer. Here, we discover that G9a methyltransferase regulates Wnt signaling in the lung by controlling the transcriptional activity of chromatin-bound β-catenin, through a non-histone substrate. Inhibition of G9a induces transcriptional, morphologic, and molecular changes consistent with alveolar type 2 (AT2) lineage commitment. Mechanistically, G9a activity functions to support regenerative properties of KrasG12D tumors and normal AT2 cells – the predominant cell of origin of this cancer. Consequently, G9a inhibition prevents KrasG12D lung adenocarcinoma tumor formation and propagation,and disrupts normal AT2 cell trans-differentiation. Consistent with these findings, low G9a expression in human lung adenocarcinoma correlates with enhanced AT2 gene expression and improved prognosis. These data reveal G9a as a critical regulator of Wnt signaling, implicating G9a as a potential target in lung cancer and other AT2-mediated lung pathologies.


2020 ◽  
Vol 12 (537) ◽  
pp. eaaw0262 ◽  
Author(s):  
Jesse D. Kirkpatrick ◽  
Andrew D. Warren ◽  
Ava P. Soleimany ◽  
Peter M. K. Westcott ◽  
Justin C. Voog ◽  
...  

Lung cancer is the leading cause of cancer-related death, and patients most commonly present with incurable advanced-stage disease. U.S. national guidelines recommend screening for high-risk patients with low-dose computed tomography, but this approach has limitations including high false-positive rates. Activity-based nanosensors can detect dysregulated proteases in vivo and release a reporter to provide a urinary readout of disease activity. Here, we demonstrate the translational potential of activity-based nanosensors for lung cancer by coupling nanosensor multiplexing with intrapulmonary delivery and machine learning to detect localized disease in two immunocompetent genetically engineered mouse models. The design of our multiplexed panel of sensors was informed by comparative transcriptomic analysis of human and mouse lung adenocarcinoma datasets and in vitro cleavage assays with recombinant candidate proteases. Intrapulmonary administration of the nanosensors to a Kras- and Trp53-mutant lung adenocarcinoma mouse model confirmed the role of metalloproteases in lung cancer and enabled accurate detection of localized disease, with 100% specificity and 81% sensitivity. Furthermore, this approach generalized to an alternative autochthonous model of lung adenocarcinoma, where it detected cancer with 100% specificity and 95% sensitivity and was not confounded by lipopolysaccharide-driven lung inflammation. These results encourage the clinical development of activity-based nanosensors for the detection of lung cancer.


2015 ◽  
Vol 89 (16) ◽  
pp. 8462-8473 ◽  
Author(s):  
Margaux Monot ◽  
Alexandra Erny ◽  
Barbara Gineys ◽  
Sophie Desloire ◽  
Christine Dolmazon ◽  
...  

ABSTRACTOvine pulmonary adenocarcinoma is a naturally occurring lung cancer in sheep induced by the Jaagsiekte sheep retrovirus (JSRV). Its envelope glycoprotein (Env) carries oncogenic properties, and its expression is sufficient to inducein vitrocell transformation andin vivolung adenocarcinoma. The identification of cellular partners of the JSRV envelope remains crucial for deciphering mechanisms leading to cell transformation. We initially identified RALBP1 (RalAbindingprotein1; also known as RLIP76 or RIP), a cellular protein implicated in theraspathway, as a partner of JSRV Env by yeast two-hybrid screening and confirmed formation of RALBP1/Env complexes in mammalian cells. Expression of the RALBP1 protein was repressed in tumoral lungs and in tumor-derived alveolar type II cells. Through its inhibition using specific small interfering RNA (siRNA), we showed that RALBP1 was involved in envelope-induced cell transformation and in modulation of the mTOR (mammalian target of rapamycin)/p70S6K pathway by the retroviral envelope.IMPORTANCEJSRV-induced lung adenocarcinoma is of importance for the sheep industry. While the envelope has been reported as the oncogenic determinant of the virus, the cellular proteins directly interacting with Env are still not known. Our report on the formation of RALBP/Env complexes and the role of this interaction in cell transformation opens up a new hypothesis for the dysregulation observed upon virus infection in sheep.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Jing Sun ◽  
Bo Li ◽  
Yang Feng ◽  
Yao Sun ◽  
...  

AbstractThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2545
Author(s):  
Ya-Hui Chen ◽  
Po-Hui Wang ◽  
Pei-Ni Chen ◽  
Shun-Fa Yang ◽  
Yi-Hsuan Hsiao

Cervical cancer is one of the major gynecologic malignancies worldwide. Treatment options include chemotherapy, surgical resection, radiotherapy, or a combination of these treatments; however, relapse and recurrence may occur, and the outcome may not be favorable. Metformin is an established, safe, well-tolerated drug used in the treatment of type 2 diabetes; it can be safely combined with other antidiabetic agents. Diabetes, possibly associated with an increased site-specific cancer risk, may relate to the progression or initiation of specific types of cancer. The potential effects of metformin in terms of cancer prevention and therapy have been widely studied, and a number of studies have indicated its potential role in cancer treatment. The most frequently proposed mechanism underlying the diabetes–cancer association is insulin resistance, which leads to secondary hyperinsulinemia; furthermore, insulin may exert mitogenic effects through the insulin-like growth factor 1 (IGF-1) receptor, and hyperglycemia may worsen carcinogenesis through the induction of oxidative stress. Evidence has suggested clinical benefits of metformin in the treatment of gynecologic cancers. Combining current anticancer drugs with metformin may increase their efficacy and diminish adverse drug reactions. Accumulating evidence is indicating that metformin exerts anticancer effects alone or in combination with other agents in cervical cancer in vitro and in vivo. Metformin might thus serve as an adjunct therapeutic agent for cervical cancer. Here, we reviewed the potential anticancer effects of metformin against cervical cancer and discussed possible underlying mechanisms.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


2021 ◽  
Vol 22 (6) ◽  
pp. 2925
Author(s):  
Victor Häussling ◽  
Romina H Aspera-Werz ◽  
Helen Rinderknecht ◽  
Fabian Springer ◽  
Christian Arnscheidt ◽  
...  

A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


Sign in / Sign up

Export Citation Format

Share Document