scholarly journals Modifiable traits, healthy behaviours, and leucocyte telomere length

Author(s):  
Vasiliki Bountziouka ◽  
Crispin Musicha ◽  
Elias Allara ◽  
Stephen Kaptoge ◽  
Qingning Wang ◽  
...  

Background: Telomere length is associated with risk of several age-related diseases and cancers. The extent to which telomere length may be modifiable through lifestyle and behaviour and whether this has any clinical consequences is unknown. Methods: In up to 422,797 participants in UK Biobank, we investigated associations of leucocyte telomere length (LTL) with 117 potentially modifiable traits, as well as two indices of healthy behaviours incorporating smoking, physical activity, diet, maintenance of a healthy body weight and alcohol intake. Associations were interpreted as age-related change in LTL by dividing the trait beta coefficients with the age-coefficient. We used Mendelian Randomisation (MR) to test causality of the observed associations of educational attainment and smoking behaviour with LTL. We investigated whether the associations of LTL with 22 diseases were modified by the number of healthy behaviours and the extent to which the associations of more healthy behaviours with greater life expectancy and lower risk of coronary artery disease (CAD) may be mediated through LTL. Results: 71 traits showed significant associations with LTL but most were modest, equivalent to <1 year of age-related change in LTL. In multivariable analyses of 17 traits with stronger associations (equivalent to ≥2 years of age-related change in LTL), five traits (oily fish intake, educational attainment, general health status, walking pace and current smoking) remained significant. MR analysis suggested that educational attainment and smoking behaviour causally affect LTL. Both indices of healthy behaviour were positively and linearly associated with LTL, with those with the healthiest behaviour having longer LTL equivalent to approx. 3.5 years of age-related change in LTL when compared with those with the least heathy behaviours (P<0.001). However, healthy behaviours only explained <0.2% of the total variation in LTL and did not significantly modify the association of LTL with risk of any of the diseases studied. Neither the association of more healthy behaviours on greater life expectancy or lower risk of CAD were substantially mediated through LTL. Conclusions: Several potentially modifiable traits and healthy behaviours have a quantifiable association with LTL, at least some of which are likely to be causal. However, these effects are not of a sufficient magnitude to substantially alter the association between LTL and various diseases or life expectancy.

BMJ ◽  
2019 ◽  
pp. l1855 ◽  
Author(s):  
Alice R Carter ◽  
Dipender Gill ◽  
Neil M Davies ◽  
Amy E Taylor ◽  
Taavi Tillmann ◽  
...  

AbstractObjectivesTo investigate the role of body mass index (BMI), systolic blood pressure, and smoking behaviour in explaining the effect of education on the risk of cardiovascular disease outcomes.DesignMendelian randomisation study.SettingUK Biobank and international genome-wide association study data.ParticipantsPredominantly participants of European ancestry.ExposureEducational attainment, BMI, systolic blood pressure, and smoking behaviour in observational analysis, and randomly allocated genetic variants to instrument these traits in mendelian randomisation.Main outcomes measureThe risk of coronary heart disease, stroke, myocardial infarction, and cardiovascular disease (all subtypes; all measured in odds ratio), and the degree to which this is mediated through BMI, systolic blood pressure, and smoking behaviour respectively.ResultsEach additional standard deviation of education (3.6 years) was associated with a 13% lower risk of coronary heart disease (odds ratio 0.86, 95% confidence interval 0.84 to 0.89) in observational analysis and a 37% lower risk (0.63, 0.60 to 0.67) in mendelian randomisation analysis. As a proportion of the total risk reduction, BMI was estimated to mediate 15% (95% confidence interval 13% to 17%) and 18% (14% to 23%) in the observational and mendelian randomisation estimates, respectively. Corresponding estimates were 11% (9% to 13%) and 21% (15% to 27%) for systolic blood pressure and 19% (15% to 22%) and 34% (17% to 50%) for smoking behaviour. All three risk factors combined were estimated to mediate 42% (36% to 48%) and 36% (5% to 68%) of the effect of education on coronary heart disease in observational and mendelian randomisation analyses, respectively. Similar results were obtained when investigating the risk of stroke, myocardial infarction, and cardiovascular disease.ConclusionsBMI, systolic blood pressure, and smoking behaviour mediate a substantial proportion of the protective effect of education on the risk of cardiovascular outcomes and intervening on these would lead to reductions in cases of cardiovascular disease attributable to lower levels of education. However, more than half of the protective effect of education remains unexplained and requires further investigation.


2018 ◽  
Author(s):  
Eleanor Sanderson ◽  
George Davey Smith ◽  
Jack Bowden ◽  
Marcus R. Munafò

AbstractRecent analyses have shown educational attainment to be associated with a number of health outcomes. This association may, in part, be due to an effect of educational attainment on smoking behaviour. In this study we apply a multivariable Mendelian randomisation design to determine whether the effect of educational attainment on smoking behaviour could be due to educational attainment or general cognitive ability. We use individual data from the UK Biobank study (N = 120,050) and summary data from large GWAS studies of educational attainment, cognitive ability and smoking behaviour. Our results show that more years of education are associated with a reduced likelihood of smoking which is not due to an effect of general cognitive ability on smoking behaviour. Given the considerable physical harms associated with smoking, the effect of educational attainment on smoking is likely to contribute to the health inequalities associated with differences in educational attainment.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aaron L. Slusher ◽  
Tiffany M. Zúñiga ◽  
Edmund O. Acevedo

Age-related elevations in proinflammatory cytokines, known as inflamm-aging, are associated with shorter immune cell telomere lengths. Purpose. This study examined the relationship of plasma PTX3 concentrations, a biomarker of appropriate immune function, with telomere length in 15 middle-aged (40-64 years) and 15 young adults (20-31 years). In addition, PBMCs were isolated from middle-aged and young adults to examine their capacity to express a key mechanistic component of telomere length maintenance, human telomerase reverse transcriptase (hTERT), following ex vivo cellular stimulation. Methods. Plasma PTX3 and inflammatory cytokines (i.e., IL-6, IL-10, TGF-β, and TNF-α), PBMC telomere lengths, and PBMC hTERT gene expression and inflammatory protein secretion following exposure to LPS, PTX3, and PTX3+LPS were measured. Results. Aging was accompanied by the accumulation of centrally located visceral adipose tissue, without changes in body weight and BMI, and alterations in the systemic inflammatory milieu (decreased plasma PTX3 and TGF-β; increased TNF-α (p≤0.050)). In addition, shorter telomere lengths in middle-aged compared to young adults (p=0.011) were negatively associated with age, body fat percentages, and plasma TNF-α (r=−0.404, p=0.027; r=−0.427, p=0.019; and r=−0.323, p=0.041, respectively). Finally, the capacity of PBMCs to increase hTERT gene expression following ex vivo stimulation was impaired in middle-aged compared to young adults (p=0.033) and negatively associated with telomere lengths (r=0.353, p=0.028). Conclusions. Proinflammation and the impaired hTERT gene expression capacity of PBMCs may contribute to age-related telomere attrition and disease.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 475
Author(s):  
Maria Santa Rocca ◽  
Ludovica Dusi ◽  
Andrea Di Nisio ◽  
Erminia Alviggi ◽  
Benedetta Iussig ◽  
...  

Telomeres are considered to be an internal biological clock, and their progressive shortening has been associated with the risk of age-related diseases and reproductive alterations. Over recent years, an increasing number of studies have focused on the association between telomere length and fertility, identifying sperm telomere length (STL) as a novel biomarker of male fertility. Although typically considered to be repeated DNA sequences, telomeres have recently been shown to also include a long non-coding RNA (lncRNA) known as TERRA (telomeric repeat-containing RNAs). Interestingly, males with idiopathic infertility show reduced testicular TERRA expression, suggesting a link between TERRA and male fertility. The aim of this study was to investigate the role of seminal TERRA expression in embryo quality. To this end, STL and TERRA expression were quantified by Real Time qPCR in the semen of 35 men who underwent assisted reproductive technologies (ART) and 30 fertile men. We found that TERRA expression in semen and STL was reduced in patients that underwent ART (both p < 0.001). Interestingly, TERRA and STL expressions were positively correlated (p = 0.010), and TERRA expression was positively associated with embryo quality (p < 0.001). These preliminary findings suggest a role for TERRA in the maintenance of sperm telomere integrity during gametogenesis, and for the first time, TERRA expression was found as a predictive factor for embryo quality in the setting of assisted reproduction.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 253
Author(s):  
Graciela Gavia-García ◽  
Juana Rosado-Pérez ◽  
Taide Laurita Arista-Ugalde ◽  
Itzen Aguiñiga-Sánchez ◽  
Edelmiro Santiago-Osorio ◽  
...  

A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.


2020 ◽  
Vol 14 (11) ◽  
pp. 933-941
Author(s):  
Ying Sun ◽  
Wei Wang ◽  
Yue-Ru Jiao ◽  
Jian Ren ◽  
Lei Gao ◽  
...  

Aim: This study aimed to explore the prognostic value of leukocyte telomere length (LTL) in patients with coronary artery disease (CAD). Materials & methods: We enrolled 366 CAD patients and 76 healthy subjects in this study. LTL was measured. All subjects were followed up for 6 months for further analysis regarding major adverse cardiac events (MACEs). Results: CAD patients had a significantly shortened LTL compared with healthy subjects (p < 0.05). The area under the curve for LTL prediction of MACEs was 0.769 (p < 0.001), with a shorter LTL being an independent predictor of MACEs (Cox proportional hazards regression, hazard ratio: 2.866; p < 0.001). Conclusion: LTL could be considered as an independent predictor of short-term MACEs in CAD.


2021 ◽  
Vol 162 (33) ◽  
pp. 1318-1327
Author(s):  
Tamás Halmos ◽  
Ilona Suba

Összefoglaló. Az emberek a lehető leghosszabb ideig akarnak élni, jó egészségben. Ha kiküszöbölnénk a kedvezőtlen külső körülményeket, a várható élettartam meghaladhatná a 100 évet. A 20. és 21. században a jóléti társadalmakban a várható élettartam jelentősen megnőtt, így Magyarországon is. Az áttekintett irodalom alapján megvizsgáltuk, hogy a genetika és az öröklődés mellett milyen endokrinológiai és metabolikus tényezők játszanak szerepet az élet meghosszabbításában. Megvizsgáltunk minden endogén tényezőt, amely pozitívan vagy negatívan befolyásolhatja az életkorral összefüggő betegségeket (Alzheimer-kór, szív- és érrendszeri betegségek, rák) és az élettartamot. Kiemeltük a hyperinsulinaemia, az inzulinrezisztencia, a metabolikus szindróma öregedést gyorsító hatását, az inzulinszerű növekedési hormon-1 ellentmondásos szerepét, valamint az élet meghosszabbításában részt vevő, újabban felfedezett peptideket, mint a klotho és a humanin. Ismertettük a mitochondriumok szerepét az élettartam meghatározásában, bemutattuk a mitohormesis folyamatát és annak stresszvédő funkcióját. Bemutattuk a rapamicin célszervét, az mTOR-t, amelynek gátlása meghosszabbítja az élettartamot, valamint a szirtuinokat. Kitértünk az autophagia folyamatára, és ismertettük a szenolitikumok szerepét az öregedésben. Az időskori autoimmunitás csökkenése hozzájárul az élettartam rövidüléséhez, utaltunk a thymus koordináló szerepére. Kiemeltük a bélmikrobiom fontos szerepét az élettartam szabályozásában. Hivatkoztunk a „centenáriusok” megfigyeléséből nyert humánadatokra. Megvizsgáltuk, milyen beavatkozási lehetőségek állnak rendelkezésre az egészségben tölthető élettartam meghosszabbításához. Az életmódbeli lehetőségek közül kiemeltük a kalóriabevitel-csökkentés és a testmozgás jótékony szerepét. Megvizsgáltuk egyes gyógyszerek feltételezett hatásait. Ezek közé tartozik a metformin, az akarbóz, a rezveratrol. E gyógyszerek mindegyikének hatása hasonló a kalóriamegszorításéhoz. Nincs olyan „csodaszer”, amely igazoltan meghosszabbítja az élettartamot emberben. Egyes géneknek és génmutációknak jótékony hatásuk van, de ezt környezeti tényezők, betegségek, balesetek és más külső ártalmak módosíthatják. Kiemeljük az elhízás, az alacsony fokozatú gyulladás és az inzulinrezisztencia öregedésre gyakorolt gyorsító hatását. A metabolikus szindróma elterjedtsége miatt ez jelentős népegészségügyi kockázatot jelent. Az inzulin, a növekedési hormon és az inzulinszerű növekedési faktorok hatásainak értékelése továbbra is ellentmondásos. Az egészséges, szellemileg és fizikailag aktív életmód, a kalóriacsökkentés mindenképpen előnyös. Az életet meghosszabbító szerek értékelése még vitatott. Orv Hetil. 2021; 162(33): 1318–1327. Summary. People want to live as long as possible in good health. If we eliminate the unfavorable external conditions, the life expectancy could exceed 100 years. In the 20th and 21th centuries, life expectancy in welfare societies increased significantly, including in Hungary. Based on the reviewed literature, we examined what endocrinological and metabolic factors play a role in prolonging life in addition to genetics and inheritance. We examined all endogenous factors that can positively or negatively affect age-related diseases (Alzheimer’s disease, cardiovascular disease, cancer) and longevity. We highlighted the aging effects of hyperinsulinemia, insulin resistance, metabolic syndrome, the controversial role of insulin-like growth factor-1, and more recently discovered peptides involved in prolonging lifespan, such as klotho and humanin. We described the role of mitochondria in determining longevity, we demonstrated the process of mitohormesis and its stress-protective function. We presented the target organ of rapamycin, mTOR, the inhibition of which prolongs lifespan, as well as sirtuins. We covered the process of autophagy and described the role of senolytics in aging. The decrease in autoimmunity in old age contributes to the shortening of life expectancy, we referred to the coordinating role of the thymus. We highlighted the important role of intestinal microbiome in the regulation of longevity. We referred to human data obtained from observations on “centenarians”. We examined what intervention options are available to prolong healthy life expectancy. Among the lifestyle options, we highlighted the beneficial role of calorie reduction and exercise. We examined the putative beneficial effects of some drugs. These include metformin, acarbose, resveratrol. The effect of each of these drugs is similar to calorie restriction. There is no “miracle cure” that has been shown to prolong life-span in humans. Some genes and gene mutations have beneficial effects, but this can be modified by environmental factors, diseases, accidents, and other external harms. We highlight the accelerating effects of obesity, low-grade inflammation, and insulin resistance on aging. Due to the prevalence of metabolic syndrome, this poses a significant risk to public health. The assessment of the effects of insulin, growth hormone, and insulin-like growth factors remains controversial. A healthy, mentally and physically active lifestyle, calorie reduction is definitely beneficial. The evaluation of life-prolonging agents is still controversial. Orv Hetil. 2021; 162(33): 1318–1327.


Sign in / Sign up

Export Citation Format

Share Document