scholarly journals Troponin-I localizes selected apico-basal cell polarity signals

2018 ◽  
Author(s):  
Sergio Casas-Tintó ◽  
Alberto Ferrús

AbstractBeyond its well characterized role in muscle contraction,DrosophilaTroponin I (TnI) is expressed in other cell types where it plays a role in proliferation control. TnI traffics between the nucleus and the cytoplasm through a sumoylation-dependent mechanism. We address here the role of TnI in the cytoplasm. TnI accumulates in the apical region of epidermal cells and neuroblasts. TnI helps to localize and co-immunoprecipitates with Par-3/Bazooka and with disc large (Dlg), two components of the apico-basal polarity system. By contrast, Scribbled is not affected by TnI depletion. In neuroblasts, TnI is required for the polar localization of Miranda while non-polar Dlg is not affected. TnI loss-of-function triggers genome instability, cell apoptosis and extrusion from wing disc epithelia. However, rescue from apoptosis by p35 does not prevent genome instability demonstrating that both features, apoptosis and genome instability, are mechanistically independent. While PI3K is known to contribute to apico-basal polarity of epithelia in vertebrates,DrosophilaPI3K depletion alters neither the apical localization of TnI or Par3/Bazooka, nor the basal localization of Dlg. However, the overexpression of PI3K prevents the polarity defects caused by TnI depletion. Thus, TnI binds certain apico-basal polarity signals in a cell type dependent context, and it unveils a hitherto unsuspected diversity of mechanisms to allocate cell polarity factors.

Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 711-722 ◽  
Author(s):  
T.E. Rusten ◽  
R. Cantera ◽  
J. Urban ◽  
G. Technau ◽  
F.C. Kafatos ◽  
...  

Genes of the spalt family encode nuclear zinc finger proteins. In Drosophila melanogaster, they are necessary for the establishment of head/trunk identity, correct tracheal migration and patterning of the wing imaginal disc. Spalt proteins display a predominant pattern of expression in the nervous system, not only in Drosophila but also in species of fish, mouse, frog and human, suggesting an evolutionarily conserved role for these proteins in nervous system development. Here we show that Spalt works as a cell fate switch between two EGFR-induced cell types, the oenocytes and the precursors of the pentascolopodial organ in the embryonic peripheral nervous system. We show that removal of spalt increases the number of scolopodia, as a result of extra secondary recruitment of precursor cells at the expense of the oenocytes. In addition, the absence of spalt causes defects in the normal migration of the pentascolopodial organ. The dual function of spalt in the development of this organ, recruitment of precursors and migration, is reminiscent of its role in tracheal formation and of the role of a spalt homologue, sem-4, in the Caenorhabditis elegans nervous system.


Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 975-985 ◽  
Author(s):  
R. Nagaraj ◽  
A.T. Pickup ◽  
R. Howes ◽  
K. Moses ◽  
M. Freeman ◽  
...  

Growth and patterning of the Drosophila wing disc depends on the coordinated expression of the key regulatory gene vestigial both in the Dorsal-Ventral (D/V) boundary cells and in the wing pouch. We propose that a short-range signal originating from the core of the D/V boundary cells is responsible for activating EGFR in a zone of organizing cells on the edges of the D/V boundary. Using loss-of-function mutations and ectopic expression studies, we show that EGFR signaling is essential for vestigial transcription in these cells and for making them competent to undergo subsequent vestigial-mediated proliferation within the wing pouch.


2020 ◽  
Author(s):  
Parvathy Venugopal ◽  
Hugo Veyssiere ◽  
Jean-Louis Couderc ◽  
Graziella Richard ◽  
Caroline Vachias ◽  
...  

Abstract Background : Scaffold proteins support a variety of key processes during animal development. Mutant mouse for the MAGUK protein Discs large 5 (Dlg5) presents a general growth impairment and moderate morphogenetic defects. Results: Here, we generated null mutants for Drosophila Dlg5 and show that it owns similar functions in growth and epithelial architecture. Dlg5 is required for growth at a cell autonomous level in several tissues and at the organism level, affecting cell size and proliferation. Our results are consistent with Dlg5 modulating hippo pathway in the wing disc, including the impact on cell size, a defect that is reproduced by the loss of yorkie. However, other observations indicate that Dlg5 regulates growth by at least another way that may involve Myc protein but nor PI3K neither TOR pathways. Moreover, epithelia cells mutant for Dlg5 also show a reduction of apical domain determinants, though not sufficient to induce a complete loss of cell polarity. Dlg5 is also essential, in the same cells, for the presence at Adherens junctions of N-Cadherin, but not E-Cadherin. Genetic analyses indicate that junction and polarity defects are independent. Conclusions : Together our data show that Dlg5 own several conserved functions that are independent of each other in regulating growth, cell polarity and cell adhesion. Moreover, they reveal a differential regulation of E-cadherin and N-cadherin apical localization.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4283-4283
Author(s):  
Chieh Lee Wong ◽  
Andrew Innes ◽  
Baoshan Ma ◽  
Gareth Gerrard ◽  
Zainul Abidin Norziha ◽  
...  

Abstract Introduction Despite significant progress in the understanding of the molecular pathogenesis of myeloproliferative neoplasms (MPN) and the identification of high molecular risk (HMR) genes (i.e. ASXL1, EZH2, IDH1 and IDH2 genes), the mechanisms by which different cell types predominate in the different disease subtypes and their implications for prognosis remain uncertain. Given the recently described association of senescence and fibrosis in a number of pathologies by Menoz-Espin et al, we hypothesized that genes implicated in oncogene-induced senescence (OIS) and senescence associated secretory phenotype (SASP) may contribute to the pathogenesis of these neoplastic bone marrow disorders that frequently show evidence of fibrosis. Specifically, we were interested in the gene expression levels in different disease subtypes, at a cell-type level, and whether these patterns of differential expression were distinct from the transforming JAK-STAT pathway and the HMR genes. Aim To elucidate the role of OIS and SASP genes in the pathogenesis of MPN subtypes by determining the differential expression of the genes in specific cell types in patients with MPN. Methods We performed gene expression profiling on normal controls (NC) and patients with MPN who were diagnosed with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) according to the 2008 WHO diagnostic criteria. Two cohorts of patients, the patient and validation cohorts, from 3 tertiary-level hospitals were recruited prospectively over 3 years. Peripheral blood samples were taken and sorted into polymorphonuclear cells (PMN), mononuclear cells (MNC) and T cells. RNA was extracted from each cell population. Gene expression profiling of the human transcriptome was performed using microarray and RNA sequencing on the patient and validation cohorts respectively. Gene expression analyses (GEA) were performed on 4 sets of genes derived from publicly available or custom derived gene set enrichment analysis: 92 OIS genes, 88 SASP genes (Gil et al), 4 HMR genes, and 126 genes associated with JAK-STAT pathway. Gene expression levels for each cell type in each disease were compared with NC to obtain the differential expression of the genes. RNA-seq analysis of samples from the validation cohort was used to validate the microarray results from the patient cohort. Results Twenty-eight patients (10 ET, 11 PV and 7 PMF) and 11 NC were recruited into the patient cohort. Twelve patients (4 ET, 4 PV and 4 PMF) and 4 NC were recruited into the validation cohort. After combination of the microarray and RNA-seq datasets, GEA of the OIS genes revealed the differential expressions of MCTP1 and SULT1B1 genes by PMN in PV but of none in PMF. In contrast, the BEX1 gene was identified as differentially expressed by MNC in PMF but none in PV. GEA of the SASP genes revealed differential expression of THBS1 gene by MNC in PMF but of none in PV. None of the SASP genes were differentially expressed by PMN in either PV or PMF. No differentially expressed genes were identified by PMN or MNC in ET, or by T cells in any of the diseases. Notably, GEA of the HMR genes and genes associated with the JAK-STAT pathways did not show any differential expression in any disease subtype by any cell type. Conclusions We have found strikingly distinct patterns of differential expression of senescence associated genes by PMN (in PV) and MNC (in PMF). These results provide a novel insight into the mechanisms underlying the different phenotype of the MPN subtypes and also to the cells responsible for mediating the differences. The lack of differential expression of OIS and SASP genes in ET may reflect the milder clinical phenotype of the disease. Although mutations in the HMR genes are associated with poor prognosis in PMF, the lack of differential expression in these genes and genes associated with the JAK-STAT pathway is in keeping with their mutated status and suggests that they give rise to the disease phenotypes via altering downstream expression of genes associated in other pathways such as the senescence pathways studied here. Further studies are warranted to investigate the role of these genes and the pathways involved in senescence at a cell-type specific level in order to gain further insight into how they can potentially give rise to the various disease phenotypes in MPN and unmask potential therapeutic targets. Disclosures Aitman: Illumina: Honoraria.


2020 ◽  
Vol 21 (21) ◽  
pp. 8241
Author(s):  
Sun-Ju Yi ◽  
Kyunghwan Kim

Aging is the progressive decline or loss of function at the cellular, tissue, and organismal levels that ultimately leads to death. A number of external and internal factors, including diet, exercise, metabolic dysfunction, genome instability, and epigenetic imbalance, affect the lifespan of an organism. These aging factors regulate transcriptome changes related to the aging process through chromatin remodeling. Many epigenetic regulators, such as histone modification, histone variants, and ATP-dependent chromatin remodeling factors, play roles in chromatin reorganization. The key to understanding the role of gene regulatory networks in aging lies in characterizing the epigenetic regulators responsible for reorganizing and potentiating particular chromatin structures. This review covers epigenetic studies on aging, discusses the impact of epigenetic modifications on gene expression, and provides future directions in this area.


1976 ◽  
Vol 68 (3) ◽  
pp. 688-704 ◽  
Author(s):  
B E Hull ◽  
L A Staehelin

Using freeze-fracture techniques, we have examined the morpholog of tight junction networks found along the length of the alimentary tract of Xenopus laevis before and after metamorphosis. We have developed the hypothesis, based on these observations, that the geometrical organization of the network determined by the stress-induced shape changes normally experienced by the cells linked by the network. Consistent with this theory, tight junctions can be classified into two distinct types of network organization which differ in their response normal and experimentally induced stress conditions: (a) loosely interconnected networks which can stretch or compress extensively under tension, thereby adapting to stress changes in the tissue; and (b) evenly cross-linked networks which retain their basic morphology under normal stress conditions. The absorptive cells of the large intestine as well as the mucous cells of the gastrointestine or stomach are sealed by the first, flexible type of tight junction. The second type of junctional organization, the evenly cross-connected network, is found between absorptive cells of the small intestine and ciliated cells of the esophagus, and reflects in its constant morphology the relative stability of the apical region of both of these cell types. Networks intermediate between these two types arise when a cell which would normally form a lossely interconnected network borders a cell which tends to form a more evenly cross-linked network, as is found in the esophagus where ciliated and goblet cells adjoin. Despite the change in the animal's diet during metamorphosis from herbivorous to carnivorous, the basic gemetrical organization of the networks associated with each tissue of the alimentary tract remains the same.


2017 ◽  
Vol 37 (18) ◽  
Author(s):  
Shinjinee Sengupta ◽  
Samir K. Maji ◽  
Santanu K. Ghosh

ABSTRACT Loss of p53 function is largely responsible for the occurrence of cancer in humans. Aggregation of mutant p53 has been found in multiple cancer cell types, suggesting a role of aggregation in loss of p53 function and cancer development. The p53 protein has recently been hypothesized to possess a prion-like conformation, although experimental evidence is lacking. Here, we report that human p53 can be inactivated upon exposure to preformed fibrils containing an aggregation-prone sequence-specific peptide, PILTIITL, derived from p53, and the inactive state was found to be stable for many generations. Importantly, we provide evidence of a prion-like transmission of these p53 aggregates. This study has significant implications for understanding cancer progression due to p53 malfunctioning without any loss-of-function mutation or occurrence of transcriptional inactivation. Our data might unlock new possibilities for understanding the disease and will lead to rational design of p53 aggregation inhibitors for the development of drugs against cancer.


1997 ◽  
Vol 185 (8) ◽  
pp. 1505-1510 ◽  
Author(s):  
Holden T. Maecker ◽  
Shoshana Levy

CD81 is a cell surface molecule expressed on many cell types and associated with the CD19/ CD21/Leu13 signal-transducing complex on B cells. A recent report implies that CD81 expression on thymic stromal cells is important in the maturation of thymocytes from CD4− CD8− to CD4+CD8+. However, we have produced CD81-null mice by gene targeting, and find that they undergo normal development of thymocytes and express normal numbers of T cells. B cells are also found in normal numbers in the spleen, blood, and peritoneal cavity of CD81-null mice, but they express a lower level of CD19 compared to heterozygous littermates. Finally, early antibody responses to the protein antigen ovalbumin are weaker in CD81null mice compared to their heterozygous littermates. This is consistent with the proposed role of the CD19/CD21/CD81-signaling complex in lowering the threshold for B cell responses. These results show that CD81 is not required for maturation of T cells, but is important for optimal expression of CD19 on B cells and optimal stimulation of antibody production.


2021 ◽  
Author(s):  
Afrooz Dabbaghizadeh ◽  
Alexandre Pare ◽  
Zacharie Cheng-Boivin ◽  
Robin Dagher ◽  
Sandra Minotti ◽  
...  

Autosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS), is caused by loss of function mutations in the SACS gene, which encodes sacsin, a giant protein of 520 kDa. A key feature of the absence of sacsin in cells is the formation of abnormal bundles of intermediate filaments (IF) including neurofilaments (NF) in neurons and vimentin IF in fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones. The SacsJ domain resolved NF bundles in cultured Sacs-/- neurons, however, its mechanism is still unclear. Here, we focused on the role of SacsJ in NF assembly. We report that the SacsJ domain directly interacts with NF proteins in vitro to disassemble NFL filaments, and to inhibit their initial assembly, in the absence of Hsp70. We generated a cell-penetrating peptide derived from this domain, SacsJ-myc-TAT, which was efficient in disassembling both vimentin IF and NF in cultured fibroblasts and Sacs+/+ motor neurons as well as NF bundles in cultured Sacs-/- motor neurons. Whereas a normal NF network was restored in Sacs-/- neurons treated with the SacsJ peptide, there was some loss of IF networks in Sacs+/+ fibroblasts or neurons. These results suggest that SacsJ is a key regulator of NF and IF networks in cells, with implications for its therapeutic use.


2020 ◽  
Author(s):  
Anna Polesskaya ◽  
Arthur Boutillon ◽  
Yanan Wang ◽  
Marc Lavielle ◽  
Sophie Vacher ◽  
...  

ABSTRACTBranched actin networks polymerized by the Arp2/3 complex are critical for cell migration. The WAVE complex is the major Arp2/3 activator at the leading edge of migrating cells. However, multiple distinct WAVE complexes can be assembled in a cell, due to the combinatorial complexity of paralogous subunits. When systematically analyzing the contribution of each WAVE complex subunit to the metastasis-free survival of breast cancer patients, we found that overexpression of the CYFIP2 subunit was surprisingly associated with good prognosis. Gain and loss of function experiments in transformed and untransformed mammary epithelial cells revealed that cell migration was always inversely related to CYFIP2 levels. The role of CYFIP2 was systematically opposite to the role of the paralogous subunit CYFIP1 or of the NCKAP1 subunit. The specific CYFIP2 function in inhibiting cell migration was related to its unique ability to down-regulate classical pro-migratory WAVE complexes. The anti-migratory function of CYFIP2 was also revealed in migration of prechordal plate cells during gastrulation of the zebrafish embryo, indicating that the unique function of CYFIP2 is critically important in both physiological and pathophysiological migrations.


Sign in / Sign up

Export Citation Format

Share Document