Fire resistance of the vertical glass structures with thermal protection foil

2020 ◽  
Vol 11 (3) ◽  
pp. 395-407
Author(s):  
András Jakab ◽  
Viktor Hlavicka ◽  
Ágoston Restás ◽  
Eva Lubloy

Purpose During the building designing, it is very important to deal with the fire resistance of the structures. The designed materials for escape routes should be selected to ensure the usability of the structures until the time of escape. Planning affects the glass structures similarly, so these can also be partition walls and load bearing structures, although the latter is less applied on escape routes. The heat protection of the glasses can be improved with heat-protective foils, while fire protection is provided by gel intumescent material. Design/methodology/approach To research the topic of fire resistance, laboratory experiments were carried out on small-scaled glass elements with thermal protection foil at Budapest University of Technology and Economics at the Department of Construction Materials and Technologies. Findings Fire protection of small model specimens was tested with blowtorch fire and furnace heat load. During the experiments, six foils were tested. Single pane glass, double layered and triple glazed specimens were tested with blowtorch fire. Originality/value Fire protection of small model specimens was tested with blowtorch fire and furnace heat load. During the experiments, six foils were tested. Single pane glass, double layered and triple glazed specimens were tested with blowtorch fire. In case of heat-protected glazing, the foils on the “protected” side of the single pane glass do not have a fire protection effect based on blowtorch fire test. For double glassed specimens, the P35 foil has a perceptible effect, even for the requirements of the flame breakthrough (E, integrity), when the foil is placed on the inner side (position 3) of the second glass layer. The stratification of each triple glazed specimens was effective against blowtorch fire load (3 M, S4&P35), so (EI, integrity and isolation) it can meet the requirements of flame breakthrough and thermal insulation.

Author(s):  
Saeed Bakhtiyari ◽  
Arsalan Kalali ◽  
Leila Taghi Akbari ◽  
Farhang Farahbod

PurposeThis paper aims to evaluate fire resistance of carbon fiber-reinforced polymer (CFRP)-strengthened concrete slabs in two forms of unprotected and protected against fire. Design/methodology/approachTo achieve the objective, an unstrengthened and two CFRP-strengthened concrete slabs were first subjected to increasing gravity loading until failure. Subsequently, the unstrengthened concrete slab was placed on a furnace and was subjected to a constant service gravity load and then, the temperature of the furnace was increased according to a standard temperature–time curve until the failure of the slab occurred. This slab was strengthened by CFRP with two different amounts and then, in two cases of unprotected and protected against fire, was tested in accordance with the aforementioned method. FindingsThe gravity test results revealed that CFRP strips bonded to concrete slabs increased the load-bearing capacity considerably. So, this method can be suitable for flexural strengthening of concrete slabs. The fire test results showed that because of more load-bearing capacity and subsequently increase in service gravity load, the strengthened concrete slab failed in a short time due to the lack of CFRP resistance against fire. By contrast, the protected specimens resisted the fire in a considerable time. In addition, it was revealed that details of fire protective coating had an important effect on fire resistance duration. Originality/valueIt is notable that in the literature, there is a lack of data on the fire endurance of fiber-reinforced polymer-strengthened concrete slabs alone without any fire protection system. Furthermore, the applicability and effectiveness of a new kind of spray mineral fire protective coatings was evaluated.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4003 ◽  
Author(s):  
Le ◽  
Tsai

Hybrid structures known as timber–steel composites (TSCs) have been extensively studied due to their potential use as alternative construction materials that can satisfy demands related to sustainability. In addition to load capacity, fire resistance is a major consideration regarding the extensive use of TSCs. In this study, 12 specimens were tested using a glulam timber material covering cold-formed steel at the center. Specifically, the TSCs were fabricated from two timber blocks and an I-shaped steel core assembled using dowels or glue as a major structure. In order to use additional timber as a fire protection layer to protect a major structure by its charcoal produced after being burned, an additional timber with 5 cm in thickness was used to cover the major structure. The 1-h fire testing of TSC following the ISO 834-1 standard was applied, in order to achieve the potential application for a 4-story timber building. The results showed that temperatures at the steel flange increased by more than 300 °C for the final 5 min in 10 out of the 12 TSC specimens, indicating that the fire protection provided by the timber structure was not sufficient. The charcoal layer surpassing the extra timber was originally set and entered the steel structure of the TSC, which was expected to retain its physical qualities after a fire. Methods for evaluating the charring properties, based on the conventional method for wood and the standard specification set by Eurocode 5, were used to assess the structural degradation of TSCs. The conventional assessments showed a divergence from the actual performance of TSCs. Such variations demonstrated the limitations of models for conventional wood in assessing the structure of a TSC. A realistic assessment was conducted to expand knowledge related to this composite under destructive processes and provide fire reference values for the practical implementation of TSCs.


2019 ◽  
Vol 10 (1) ◽  
pp. 24-47 ◽  
Author(s):  
Ataollah Taghipour Anvari ◽  
Mustafa Mahamid ◽  
Michael McNallan ◽  
Mohammadreza Eslami

Purpose The purpose of this paper is to present the effect of damaged fireproofing on structural steel members. This study will show that a minor damage in fireproofing will reduce the fire rating of members significantly. Damaged fireproofing happens in structures due to various reasons, and the question is always how effective is this fireproofing? This paper presents the results of one type of fireproofing and presents a parametric study on the size of damage and its effect on fire resistance of structural steel members. Design/methodology/approach The study has been performed using numerical methods, thermal and structural finite element analysis. The analysis method has been verified by experimental results. Findings Small fire protection damage or loss leads to significant rise of temperature at the damaged parts and causes severe fire resistance reduction of beams. The higher fire protection damage’s extension at the bottom flange of the steel beams does not have any major influence on the rate of reduction of fire resistance of the beams. Steel beams experience greater fire resistance reduction at higher load levels because of the existing of higher stresses and loads within the steel beam section. Research limitations/implications The study has been performed using finite element analysis, and it covers a wide range of practical sizes. However, experimental work will be performed by the researchers when funding is granted. Practical implications The study provides researchers and practitioners with an estimate on the effect of damaged fireproofing on fire resistance of structural steel beams. Social implications Understanding the effect of the effect of damaged fireproofing helps in estimating the fire resistance of structural steel members, which may protect collapses and disasters. Originality/value The research is original; extensive literature review has been performed, and this research is original.


2019 ◽  
Vol 11 (1) ◽  
pp. 22-32
Author(s):  
Mai Häßler ◽  
Dustin Häßler ◽  
Sascha Hothan ◽  
Simone Krüger

Purpose The purpose of this paper is to investigate the performance of intumescent coating on tension rod systems and their components. Steel tension rod systems consist of tension rods, fork end connectors and associated intersection or gusset plates. In case of fire, beside the tension rods themselves, the connection parts require appropriate fire protection. Intumescent fire protection coatings prevent a rapid heating of the steel and help secure the structural load-carrying capacity. Because the connection components of tension rod systems feature surface curvature and a complex geometry, high demand is placed on the intumescence and thermal protection performance of the coatings. Design/methodology/approach In this paper, experimental studies were carried out for steel tension rod systems with intumescent coating. The examined aspects include the foaming and cracking behaviour, the influence of different dry film thicknesses, the heating rate of the steel connecting parts in comparison to the tension rods, and the mounting orientation of the tension rods together with their fork end connectors. Findings The results show that a decrease in surface curvature and/or an increase in mass concentration of the steel components leads to a lower heating rate of the steel. Moreover, the performance of the intumescent coating on tension rod systems is influenced by the mounting orientation of the steel components. Originality/value The findings based on fire tests contribute to a better understanding of the intumescent coating performance on connection components of tension rod systems. This subject has not been extensively studied yet.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Pavel Koštial ◽  
Zora Koštialová Jančíková ◽  
Robert Frischer

These days there are undeniably unique materials that, however, must also meet demanding safety requirements. In the case of vehicles, these are undoubtedly excellent fire protection characteristics. The aim of the work is to experimentally verify the proposed material compositions for long-term heat loads and the effect of thickness, the number of laminating layers (prepregs) as well as structures with different types of cores (primarily honeycomb made of Nomex paper type T722 of different densities, aluminum honeycomb and PET foam) and composite coating based on a glass-reinforced phenolic matrix. The selected materials are suitable candidates for intelligent sandwich structures, usable especially for interior cladding applications in the industry for the production of means of public transport (e.g., train units, trams, buses, hybrid vehicles).


2015 ◽  
Vol 1092-1093 ◽  
pp. 534-538
Author(s):  
Xiong Chen ◽  
Hai Feng Xue ◽  
Hua Liang

Thermal protection materials are required to preserve the metal components of motor that suffer severe heat load. The research on thermal response of insulation of ramjet combustion chamber was carried out by the ground test and numerical simulation. During the working time of the ramjet, the back-face temperature of the thermal protection material was measured. The scanning electron microscope of samples was investigated. The calculation of thermo-chemical flow was solved by the CFD software FLUENT to provide the heat load boundary for simulation of heat transfer of EPDM insulation. The heat transfer model was solved by the FEA software ANSYS. Comparison of the temperature profile at the ablating surface between calculation and measurement shows the two results agree with each other. The simulation results can provide the temperature rising trend of insulation in a certain extent.


Author(s):  
Soo-yeon Seo ◽  
Jong-wook Lim ◽  
Su-hyun Jeong

AbstractTo figure out the change in the reinforcing effect of FRP system used for the retrofit of RC beam when it is exposed to high temperature, it is required to evaluate not only the behavior of the entire beam, but also the bond performance at anchorage zone through a bond test according to the increase of external temperature. Moreover, the study to find various fire-protection methods is necessary to prevent the epoxy from reaching the critical temperature during an exposure to high temperature. In this manner, the fire-resistance performances of externally bonded (EB) FRP and near-surface-mounted (NSM) FRP to concrete block were evaluated by high-temperature exposure tests after performing a fire-protection on the surface in this paper. Board-type insulation with mortar was considered for the fire-protection of FRP system. After the fire-protection of the FRPs bonded to concrete blocks, an increasing exposure temperature was applied to the specimens with keeping a constant shear bond stress between concrete and the FRP. Based on the result, the temperature when the bond strength of the FRP disappears was evaluated. In addition, a finite element analysis was performed to find a proper method for predicting the temperature variation of the epoxy which is fire-protected with board-type insulation during the increase of external temperature. As a result of the test, despite the same fire-protection, NSM specimens were able to resist 1.54–2.08 times higher temperature than EB specimens. In the design of fire-protection of FRP system with the board-type insulation, it is necessary to consider the transfer from sides as well as the face with FRP. If there is no insulation of FP boards on the sides, the epoxy easily reaches its critical temperature by the heat penetrated to the sides, and increasing the thickness of the FP board alone for the face with FRP does not increase the fire-resistance capacity. As a result of the FE analysis, the temperature variation at epoxy can be predicted using the analytical approach with the proper thermal properties of FP mortar and board.


Author(s):  
Aly Elgayar ◽  
Salwa Mamoun Beheiry ◽  
Alaa Jabbar ◽  
Hamad Al Ansari

Purpose Over the past decade, the United Arab Emirates (UAE) introduced several green regulatory guidelines, federal decrees, and a considerable number of environmentally friendly initiatives. Hence, the purpose of this paper is to investigate the top green materials and systems used currently in the UAE construction industry as per the new laws dictate as well as see if professionals are switching over to incorporate more green materials, systems, and/or designs. Design/methodology/approach The work involved reviewing internationally popular green materials and systems for construction, developing a questionnaire based on the literature review, surveying professionals in the seven UAE emirates, and ranking the findings based on the relative importance index. Findings Findings found the top used green materials and system in the UAE’s construction industry. As well as identified that there is a communication gap between the design and implementation phases that is possibly hindering the use of more green materials and systems. Originality/value This study sets a baseline to measure the UAE’s progress over the coming years in terms of integrating more green construction materials, systems, methodologies, and trends.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lisa Choe ◽  
Selvarajah Ramesh ◽  
Xu Dai ◽  
Matthew Hoehler ◽  
Matthew Bundy

PurposeThe purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building constructed at the National Fire Research Laboratory.Design/methodology/approachThe fire experiment was aimed to quantify the fire resistance and behavior of full-scale steel–concrete composite floor systems commonly built in the USA. The test floor assembly, designed and constructed for the 2-h fire resistance rating, was tested to failure under a natural gas fueled compartment fire and simultaneously applied mechanical loads.FindingsAlthough the protected steel beams and girders achieved matching or superior performance compared to the prescribed limits of temperatures and displacements used in standard fire testing, the composite slab developed a central breach approximately at a half of the specified rating period. A minimum area of the shrinkage reinforcement (60 mm2/m) currently permitted in the US construction practice may be insufficient to maintain structural integrity of a full-scale composite floor system under the 2-h standard fire exposure.Originality/valueThis work was the first-of-kind fire experiment conducted in the USA to study the full system-level structural performance of a composite floor system subjected to compartment fire using natural gas as fuel to mimic a standard fire environment.


Sign in / Sign up

Export Citation Format

Share Document