Pores and the formation mechanisms of SLMed AlSi10Mg

2020 ◽  
Vol 26 (9) ◽  
pp. 1657-1664
Author(s):  
Tingting Wang ◽  
Shimin Dai ◽  
Hailong Liao ◽  
Haihong Zhu

Purpose To fabricate high performance parts, this paper aims to systematically study the pores characteristics and their formation mechanisms in selective laser melting (SLM) AlSi10Mg. Design/methodology/approach Cubes of 10 × 10 × 5 mm were manufactured in different laser power, scan speed and scan space. Optical microscope (OM) and scanning electron microscopes (SEM) were used to observe morphology of pores. Findings Round or irregular pores were found in SLMed AlSi10Mg parts. All the round pores have smooth inner walls and locate in the melt pool. The formation mechanisms of the round pores are contributed to the evaporation of elements in the melt pool, H2O, high laser energy input and hollow powder. Irregular pores have rough inner walls. Big scan space, unevenness of the upper surface, large layer thickness, spatter and oxide are the main reasons of generating irregular pores which outside the melt pool. Instability of keyhole leads to the irregular pores locate in the bottom of keyhole mode melt pool. Originality/value Relationship between pores and melt pool were studied systematically for the first time. Researches of pores characteristics and their formation mechanisms in SLMed AlSi10Mg would be a valuable reference for researchers to obtain an important insight into and control the defect in SLMed Al alloy.

2017 ◽  
Vol 89 (6) ◽  
pp. 791-796
Author(s):  
Yasser A. Nogoud ◽  
Attie Jonker ◽  
Shuhaimi Mansor ◽  
A.A.A. Abuelnuor

Purpose This paper aims to propose a spreadsheet method for modeling and simulation of a retraction system mechanism for the retractable self-launching system for a high-performance glider. Design/methodology/approach More precisely, the method is based on parametric link design using Excel spreadsheets. Findings This method can be used for kinematic and dynamic analysis, graphical plotting and allows simulation of control kinematics with the ability to make quick and easy parametric changes to a design. It also has the ability to calculate the loads imposed on each component in the control system as a function of input loads and position. Practical implications This paper shows that it is possible to model complex control systems quickly and easily using spreadsheet programs already owned by most small companies. The spreadsheet model is a parametric model, and it gives a simple visual presentation of the control system with interactive movement and control by the user. Originality/value This spreadsheet model in conjunction with a simple CAD program enables the rapid and cost-effective development of control system components.


2020 ◽  
Vol 67 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Anasyida Abu Seman ◽  
Ji Kit Chan ◽  
Muhammad Anas Norazman ◽  
Zuhailawati Hussain ◽  
Dhindaw Brij ◽  
...  

Purpose This paper aims to investigate the corrosion behaviour of heat-treated and cryorolled Al 5052 alloys in different Cl− ion concentrations. Design/methodology/approach NaCl solutions with concentrations of 0, 0.5, 3.5 and 5.5 per cent were selected. Samples were subjected to pre-heat treatment (annealing at 300 °C and solution treatment at 540 °C) and cryorolling up to 30 per cent reduction before undergoing corrosion tests. The corrosion behaviour of the samples was then investigated by potentiodynamic polarization. The microstructure of the corroded samples was evaluated under an optical microscope, and the percentages of pits on their surfaces were calculated. Findings The cryorolled samples had a lower corrosion rate than the samples that were not cryorolled. The cryorolled sample that underwent solution treatment showed the highest corrosion resistance among all the samples tested. Practical implications The commercial impact of the study is the possibility of using the cryorolled Al alloy in various ion chloride environment. Originality/value The obtained results help in understanding the corrosion behaviour of cryorolled samples under different heat treatment conditions.


2017 ◽  
Vol 23 (6) ◽  
pp. 1202-1211 ◽  
Author(s):  
Sanjay Kumar ◽  
Aleksander Czekanski

Purpose WC-Co is a well-known material for conventional tooling but is not yet commercially available for additive manufacturing. Processing it by selective laser sintering (SLS) will pave the way for its commercialization and adoption. Design/methodology/approach It is intended to optimize process parameters (laser power, hatch spacing, scan speed) by fabricating a bigger part (minimum size of 10 mm diameter and 5 mm height). Microstructural analysis, EDX and hardness testing is used to study effects of process parameters. Optimized parameter is ascertained after fabricating 49 samples in preliminary experiment, 27 samples in pre-final experiment and 9 samples in final experiment. Findings Higher laser power gives rise to cracks and depletion of cobalt while higher scan speed increases porosity. Higher hatch spacing is responsible for delamination and displacement of parts. Optimized parameters are 270 W laser power, 500 mm/s scan speed, 0.04 mm layer thickness, 0.04 mm hatch spacing (resulting in energy density of 216 J/mm3) and 200°C powder bed temperature. A part comprising of small hole of 2 mm diameter, thin cylindrical pin of 0.5 mm diameter and thin wall of 2 mm width bent up to 30° angle to the base plate is fabricated. In order to calculate laser energy density, a new equation is introduced which takes into account both beam diameter and hatch spacing unlike old equation does. In order to calculate laser energy density, a new equation is formulated which takes into account both beam diameter and hatch spacing unlike old equation does. WC was not completely melted as intended giving rise to partial melting-type binding mechanism. This justified the name SLS for process in place of SLM (Selective Laser Melting). Research limitations/implications Using all possible combination of parameters plus heating the part bed to maximum shows limitation of state-of-the-art commercial powder bed fusion machine for shaping hardmetal consisting of high amount of WC (83 wt. per cent). Practical implications The research shows that microfeatures could be fabricated using WC-Co which will herald renewed interest in investigating hardmetals using SLS for manufacturing complex hard tools, molds and wear-resistance parts. Originality/value This is the first time micro features are successfully fabricated using WC-Co without post-processing (infiltration, machining) and without the help of additional binding material (such as Cu, Ni, Fe).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manoj Kumar ◽  
Gregory J. Gibbons ◽  
Amitabha Das ◽  
Indranil Manna ◽  
David Tanner ◽  
...  

Purpose The purpose of this study is to investigate the microstructural evolution of high-strength 2024 Al alloy prepared by the laser powder bed fusion (L-PBF) additive manufacturing (AM) route. The high-strength wrought Al alloy has typically been unsuitable for AM due to its particular solidification characteristics such as hot cracking, porosity and columnar grain growth. Design/methodology/approach In this research work, samples were fabricated using L-PBF under various laser energy densities by varying laser power and scan speed. The microstructural features that developed during the solidification are correlated with operating laser parameters. In addition, finite element modelling (FEM) was performed to understand the experimentally observed results. Findings Microstructure evolution and defect formation have been assessed, quantified and correlated with operating laser parameters. Thermal behaviour of samples was predicted using FEM to support experimental observations. An optimised combination of intermediate laser power and scan speed produced the least defects. Higher energy density increased hot tearing along the columnar grain boundaries, while lower energy density promoted void formation. From the quantitative results, it is evident that with increasing energy density, both the top surface and side wall roughness initially reduced till a minimum and then increased. Hardness and compressive strength were found to decrease with increasing power density due to stress relaxation from hot tearing. Originality/value This research work examined how L-PBF processing conditions influence the microstructure, defects, surface roughness and mechanical properties. The results indicates that complete elimination of solidification cracks can be only achieved by combining process optimisation and possible grain refining strategies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vincent Barre ◽  
David Orlando Ramos ◽  
Charles Medovich ◽  
Gabriela Lovera ◽  
Matthew Hoch

PurposeThe paper provides insight on the customer experience through product performance (CxPP) initiative; which was developed by Johnson & Johnson Vision to monitor and conduct product performance improvements to enhance the customer experience effort and protect sales. The piece explains the basic tenets for CxPP execution and upkeep. It also explains the methods used to create, evaluate and monitor the CxPP initiative while illustrating the ways in which the initiative functions and adds value to any firm implementing it.Design/methodology/approachThe paper utilizes a descriptive approach to explain the basic tenants of the CxPP initiative. The paper utilizes the define, measure, analyze, improve and control (DMAIC) framework to explain the tenets of the CxPP initiative. Each section of the paper utilizes descriptions of internal processes and research to further explain and justify implementation of the CxPP imitative across firms. Moreover, the piece explains the methods used to create, evaluate and monitor the CxPP initiative while illustrating the ways in which the initiative functions and adds value to the firm.FindingsAccording to JJV Quality Assurance experts, the CxPP initiative is a long-term approach that supports synergy across departments to enhance product quality, improve customer satisfaction and protect sales. By implementing the CxPP approach, JJV was able to uncover and solve four distinct defect categories that affect product quality and customer experience, thus demonstrating the importance and benefits of the CxPP initiative for any organization.Research limitations/implicationsDue to the chosen research approach, the study lacks specificity. As a result, it is recommended that future implementation of the proposed initiative opts for more testable propositions.Practical implicationsDue to competitive considerations, note that no empirical data will be shared in the findings. The scaling of the principles of this approach should be universal. But the execution; types of projects, type of customer need and feedback should be specific to each environment.Originality/valueThis paper fulfills an identified need to study the relationship between product quality, customer satisfaction and sales.


Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Author(s):  
Robert M. Fisher

By 1940, a half dozen or so commercial or home-built transmission electron microscopes were in use for studies of the ultrastructure of matter. These operated at 30-60 kV and most pioneering microscopists were preoccupied with their search for electron transparent substrates to support dispersions of particulates or bacteria for TEM examination and did not contemplate studies of bulk materials. Metallurgist H. Mahl and other physical scientists, accustomed to examining etched, deformed or machined specimens by reflected light in the optical microscope, were also highly motivated to capitalize on the superior resolution of the electron microscope. Mahl originated several methods of preparing thin oxide or lacquer impressions of surfaces that were transparent in his 50 kV TEM. The utility of replication was recognized immediately and many variations on the theme, including two-step negative-positive replicas, soon appeared. Intense development of replica techniques slowed after 1955 but important advances still occur. The availability of 100 kV instruments, advent of thin film methods for metals and ceramics and microtoming of thin sections for biological specimens largely eliminated any need to resort to replicas.


2014 ◽  
Vol 66 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Serkan Büyükdoğan ◽  
Süleyman Gündüz ◽  
Mustafa Türkmen

Purpose – The paper aims to provide new observations about static strain ageing in aluminium (Al) alloys which are widely used in structural applications. Design/methodology/approach – The present work aims to provide theoretical and practical information to industries or researchers who may be interested in the effect of static strain ageing on mechanical properties of Al alloys. The data are sorted into the following sections: introduction, materials and experimental procedure, results and discussion and conclusions. Findings – Tensile strength, proof strength (0.2 per cent) and percentage elongation measurement were used to investigate the effect of strain ageing on the mechanical properties. Wear tests were performed by sliding the pin specimens, which were prepared from as-received, solution heat-treated, deformed and undeformed specimens after ageing, on high-speed tool steel (64 HRC). It is concluded that the variations in ageing time improved the strength and wear resistance of the 6063 Al alloy; however, a plastically deformed solution-treated alloy has higher strength and wear resistance than undeformed specimens for different ageing times at 180°C. Practical implications – A very useful source of information for industries using or planning to produce Al alloys. Originality/value – This paper fulfils an identified resource need and offers practical help to the industries.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


Sign in / Sign up

Export Citation Format

Share Document