A new premolded packaging technology for low cost E/O device applications

Author(s):  
N. Takehashi ◽  
M. Horii
2021 ◽  
Author(s):  
Dinithi S. K. Rajaguru ◽  
Kamal Vidanapathirana ◽  
Kumudu S. Perera

Abstract The scientific focus has been directed through the production and application of ‘wonder material- graphene’ after its discovery in 2004. But the mass production cost has become a huge disadvantage towards commercializing graphene based manufactures. As alternative low cost material, exfoliated graphite (EG) has emerged to be a novel nanostructured carbon material with a potential for electrochemical energy storage device applications owed to its unique characteristics similar to graphene. In this study a series of EG samples were prepared by a surfactant mediated liquid phase exfoliation method by changing the exfoliation time. Electrochemical double layer capacitors (EDLCs) were fabricated using different EG samples as an electrode material and a gel polymer electrolyte (GPE). They were characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques. EDLC having EG electrodes of 10 h exfoliation time showed the highest results with single electrode specific capacitance (Csc) of 4.12 F g− 1, single electrode specific discharge capacitance (Csd) of 1.10 F g− 1 and relaxation time of 0.22 s from CV, GCD and EIS respectively.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000548-000553
Author(s):  
Zhaozhi Li ◽  
Brian J. Lewis ◽  
Paul N. Houston ◽  
Daniel F. Baldwin ◽  
Eugene A. Stout ◽  
...  

Three Dimensional (3D) Packaging has become an industry obsession as the market demand continues to grow toward higher packaging densities and smaller form factor. In the meanwhile, the 3D die-to-wafer (D2W) packaging structure is gaining popularity due to its high manufacturing throughput and low cost per package. In this paper, the development of the assembly process for a 3D die-to-wafer packaging technology, that leverages the wafer level assembly technique and flip chip process, is introduced. Research efforts were focused on the high-density flip chip wafer level assembly techniques, as well as the challenges, innovations and solutions associated with this type of 3D packaging technology. Processing challenges and innovations addressed include flip chip fluxing methods for very fine-pitch and small bump sizes; wafer level flip chip assembly program creation and yield improvements; and set up of the Pb-free reflow profile for the assembled wafer. 100% yield was achieved on the test vehicle wafer that has totally 1,876 flip chip dies assembled on it. This work has demonstrated that the flip chip 3D die-to-wafer packaging architecture can be processed with robust yield and high manufacturing throughput, and thus to be a cost effective, rapid time to market alternative to emerging 3D wafer level integration methodologies.


2020 ◽  
Vol 2 (9) ◽  
pp. 4172-4178
Author(s):  
Matias Kalaswad ◽  
Bruce Zhang ◽  
Xuejing Wang ◽  
Han Wang ◽  
Xingyao Gao ◽  
...  

Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Fang ◽  
Ning Han ◽  
Fengyun Wang ◽  
Zai-xing Yang ◽  
SenPo Yip ◽  
...  

III–V semiconductor nanowire (NW) materials possess a combination of fascinating properties, including their tunable direct bandgap, high carrier mobility, excellent mechanical flexibility, and extraordinarily large surface-to-volume ratio, making them superior candidates for next generation electronics, photonics, and sensors, even possibly on flexible substrates. Understanding the synthesis, property manipulation, and device integration of these III–V NW materials is therefore crucial for their practical implementations. In this review, we present a comprehensive overview of the recent development in III–V NWs with the focus on their cost-effective synthesis, corresponding property control, and the relevant low-operating-power device applications. We will first introduce the synthesis methods and growth mechanisms of III–V NWs, emphasizing the low-cost solid-source chemical vapor deposition (SSCVD) technique, and then discuss the physical properties of III–V NWs with special attention on their dependences on several typical factors including the choice of catalysts, NW diameters, surface roughness, and surface decorations. After that, we present several different examples in the area of high-performance photovoltaics and low-power electronic circuit prototypes to further demonstrate the potential applications of these NW materials. Towards the end, we also make some remarks on the progress made and challenges remaining in the III–V NW research field.


2015 ◽  
Vol 589 ◽  
pp. 412-418 ◽  
Author(s):  
Sung-Ik Park ◽  
Sooyeun Kim ◽  
Jung-Oh Choi ◽  
Ji-Hyeon Song ◽  
Minoru Taya ◽  
...  

1987 ◽  
Vol 108 ◽  
Author(s):  
Robert W. Keyes

ABSTRACTPackaging technology must deal with the inexorable trend of semiconductor technology towards higher levels of integration. Extrapolation of present trends suggests that chips with 100 million devices will be produced by the end of the present century. The ability of technology to miniaturize pin-outs will limit the utilization of all of these devices for purposes other than memory. This limitation plus problems of supplying power and removing heat means that chips for high-performance large systems, where the demand for pins follows a well known rule, will probably be limited to levels of integration less than 100,000. A model of large system wiring shows that large increases in the density of wires in system packages and in the rate at which heat can be removed will be needed.Less severe limitations apply to low cost applications. No large increase in power per chip can be anticipated. However, more powerful microprocessors will become available and will need increased amounts of input-output capability.


2018 ◽  
Vol 17 (3) ◽  
pp. 20-22
Author(s):  
Suhana Mohamed Sultan ◽  
Nurul Syazwani Azahurin ◽  
Azam Mohamad

Carbon nanoparticles (CNP) were synthesized in arc plasma discharge using a simple, low-cost and toxic-free precursor gas. The structural and electrical characteristics were examined. The diameter and the height of the grown CNP was 28.5 μm and  316.7 μm , respectively. SEM image showed existence of a high density and uniform nanostructures within the cylindrical bulk CNP tube. The average diameter of the nanoparticles is 600 nm. The electrical characteristics revealed  low resistance with R = 7.23 mΩ with Cu electrodes.  In addition, the device exhibited a   high conductivity of 6.8 x 105 Scm-1. These results indicate the potential of CNP material for power device applications.


Sign in / Sign up

Export Citation Format

Share Document