Investigation on the Impact of Supply Voltage in Subthreshold Leakage Mitigation

Author(s):  
Amuthavalli. G ◽  
Gunasundari. R ◽  
Palani. U
2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1271
Author(s):  
Brito ◽  
Colombo ◽  
Moreno ◽  
El-Sankary

This work presents an investigation of the temperature behavior of self-cascode composite transistors (SCCTs). Results supported by silicon measurements show that SCCTs can be used to generate a proportional to absolute temperature voltage or even a temperature-compensated voltage. Based on the achieved results, a new circuit topology of a resistorless voltage reference circuit using a Schottky diode is also presented. The circuit was fabricated in a 130 nm BiCMOS process and occupied a silicon area of 67.98 µm × 161.7 µm. The averaged value of the output voltage is 720.4 mV, and its averaged line regulation performance is 2.3 mV/V, calculated through 26 characterized chip samples. The averaged temperature coefficient (TC) obtained through five chip samples is 56 ppm/°C in a temperature range from −40 to 85°C. A trimming circuit is also included in the circuit topology to mitigate the impact of the fabrication process effects on its TC. The circuit operates with a supply voltage range from 1.1 to 2.5 V.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1410
Author(s):  
Luis Henrique Rodovalho ◽  
Orazio Aiello ◽  
Cesar Ramos Rodrigues

This paper proposes topological enhancements to increase voltage gain of ultra-low-voltage (ULV) inverter-based OTAs. The two proposed improvements rely on adoption of composite transistors and forward-body-biasing. The impact of the proposed techniques on performance figures is demonstrated through simulations of two OTAs. The first OTA achieves a 39 dB voltage gain, with a power consumption of 600 pW and an active area of 447 μm2. The latter allies the forward-body-bias approach with the benefit of the independently biased composite transistors. By combining both solutions, voltage gain is raised to 51 dB, consuming less power (500 pW) at the cost of an increased area of 727 μm2. The validation has been performed through post-layout simulations with the Cadence Analog Design Environment and the TSMC 180 nm design kit, with the supply voltage ranging from 0.3 V to 0.6 V.


Author(s):  
Sangtak Park ◽  
Eihab Abdel-Rahman

Most electrostatic actuators fabricated by MEMS technology require high actuation voltage and suffer from the pull-in phenomenon that limits the operation range. We present an amplitude-modulated resonant drive circuit to drive electrostatic actuators at much lower supply voltage than that of conventional actuators to extend their operation range. Analytical and numerical models facilitate stability analysis of electrostatic actuators coupled with the resonant drive circuit. We study the impact of parasitic capacitance and the quality factor of the resonant drive circuit on the operation range of electrostatic actuators. Furthermore, we present a new method to measure the displacement of electrostatic actuators by sensing the phase delay of the actuation voltage with respect to the input voltage. This measurement method allows us to easily incorporate feedback control into existing electrostatic actuators without any modification to the actuator itself.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012094
Author(s):  
V A Kim ◽  
Ya M Kashin ◽  
L E Kopelevich

Abstract The paper describes the characteristics of a combined motor of a separator drive. Simulation experiment provided the characteristics of a combined motor of a separator drive, which allow considering the impact of the line voltage parameters (the supply voltage amplitude and frequency) and the resistance moment created by the separated product on the electromagnetic torque of a combined motor of the separator drive and the rotation speed of the working body of the separator with a combined motor.


Author(s):  
D. V. Karkotski ◽  
A. N. Malashin ◽  
S. A. Chumakov ◽  
Y. G. Koval

When developing new or upgrading existing energy-intensive mobile objects (MO), the main way to ensure the quality parameters of the supply voltage is no worse than in the state grid, overestimation of the primary source (PS) power is 1.5–2 times relative to the maximum power of all electrical energy consumers (EEC) software.The consequence of the existing approach to determine the power of PS are: overestimation of the mass and dimensions of the autonomous power supply system (APSS) by 30–70 %, which significantly reduces speed characteristics, cross-country performance and battery autonomy of MO, as well as worsen the economics of the APSS; the workload of the PS APSS is not more than 35–55 % of the nominal capacity, which leads to a reduction in their service lives.Thus, it is impossible to take into account the peculiarities of the actual current consumption of individual EEC and the impact of their joint operation on specific PS APSS, which leads to additional financial costs and an increase in development time, as well as to the risk of failure during the testing of both the APSS and the equipment connected to it.The proposed approach for estimating the PS power of electric energy in APSS MO allows determining the full power of the EEC in terms of limited information about the EEC taking into account the nature of the load graph, as well as the magnitude and form of current consumption. As a result of analytical calculations according to the above methodology, the PS power can be reduced by 13–45 %, depending on the nature of the load, while maintaining the quality indicators of the supply voltage within acceptable limits.The considered methods for determining the power of the PS APSS will make it possible to determine the limitations for solving the problem of structural-parametric synthesis of the APSS and the algorithm for determining the power of the PS when developing a new or upgrading the existing APSS MO. This will reduce the weight and size parameters of the APSS, thereby increasing the speed characteristics, maneuverability and software permeability of MO, as well as the autonomous operation time and efficiency of the APSS operation.


Author(s):  
Abdelaziz Beddiaf ◽  
Fouad Kerrour ◽  
Salah Kemouche

Thermal drift caused by Joule heating in piezoresistive pressure sensors affects greatly the results in the shift of the offset voltage of the such sensors. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristic drift. The impact of Joule heating in a pressure sensor has been studied. The study involves the solution of  heat transfer equation considering  the conduction in Cartesian coordinates for the transient regime using Finite Difference Method. We determine how the temperature affects the sensor during the applying a supply voltage. For this, the temperature rise generated by Joule heating in piezoresistors has been calculated for  different geometrical parameters of the sensor as well as for different operating time. It is observed that Joule heating leads to important rise temperature in the piezoresistor and, hence, causes drift in the output voltage variations in a  sensor during its operated in a prolonged time. This paper put emphasis on the geometric influence parameters on these characteristics to optimize the sensor performance. The optimization of geometric parameters of sensor allows us to reducing the internal heating effect. Results showed also that low bias voltage should be applied for reducing Joule heating.


Sign in / Sign up

Export Citation Format

Share Document