Total leakage reduction by observance of parameter variations

Author(s):  
F. Sill ◽  
D. Timmermann
Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 48 ◽  
Author(s):  
Taha AL-Washali ◽  
Saroj Sharma ◽  
Fadhl AL-Nozaily ◽  
Mansour Haidera ◽  
Maria Kennedy

A significant portion of the water supplied to people doesn’t reach its valid users but instead leaks out of the distribution network, causing water wastage, revenue loss and contamination risks. This paper analyses the leakage rate, leakage components and leakage reduction potential. A minimum night flow (MNF) analysis was carried out on a district metered area (DMA) in an intermittent supply system in Zarqa, Jordan. Leakage was modelled and leakage reduction policies were analysed. Results show that MNF occurs at night or during day time depending on the water levels in customer tanks, implying that one-day MNF analysis cannot be carried out in intermittent supplies and the estimation of the legitimate consumption during MNF is more influential. The potential water savings of the different leakage reduction measures (pressure management; leakage detection; response time minimization) are separately analysed in the existing models in the literature, leading to significant overestimation of the total leakage reduction potential, while these measures are influencing each other. Pressure reduction lowers the failure frequencies but limits the potential of leakage detection surveys, as leaks will become harder to hear and detect. Investigating the inter-dependency relations of these measures is therefore essential for reasonable leakage reduction modelling and planning.


2020 ◽  
Vol 5 (1) ◽  
pp. 37-41
Author(s):  
Ardit Gjeta ◽  
Lorenc Malka

In this paper, the effect of the outlet surface area of the spiral casing on the performance of a centrifugal fan was investigated using open source CFD software OpenFOAM [1]. An automized loop with RANS and data post-processing is set up using Matlab, for allowing a large number of parameter variations. The effect was analyzed as a function of total pressure loss and static pressure recovery coefficient and on total efficiency as well.


2013 ◽  
Vol 1 (4) ◽  
pp. 6-13
Author(s):  
Vanitha . ◽  
◽  
M. Parimaladevi ◽  
D. Sharmila ◽  
◽  
...  

2004 ◽  
Vol 4 (3) ◽  
pp. 25-32
Author(s):  
J.S. Buckle

This paper describes the introduction of water demand management in the southern African context. Originally a response to drought conditions, water demand management is now a key element in Rand Water's strategy of water cycle management - a mix of interventions that (holistically and continuously) keep the water industry viable and sustainable. This experience points to awareness and community education programmes being an essential companion to the technical interventions such as leakage reduction measures.


Author(s):  
Maryam Alibeigi ◽  
Shahriar S. Moghaddam

Background & Objective: This paper considers a multi-pair wireless network, which communicates peer-to-peer using some multi-antenna amplify-and-forward relays. Maximizing the throughput supposing that the total relay nodes’ power consumption is constrained, is the main objective of this investigation. We prove that finding the beamforming matrix is not a convex problem. Methods: Therefore, by using a semidefinite relaxation technique we find a semidefinite programming problem. Moreover, we propose a novel algorithm for maximizing the total signal to the total leakage ratio. Numerical analyses show the effectiveness of the proposed algorithm which offers higher throughput compared to the existing total leakage minimization algorithm, with much less complexity. Results and Conclusion: Furthermore, the effect of different parameters such as, the number of relays, the number of antennas in each relay, the number of transmitter/receiver pairs and uplink and downlink channel gains are investigated.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1260
Author(s):  
Stefanie Duvigneau ◽  
Robert Dürr ◽  
Jessica Behrens ◽  
Achim Kienle

Biopolymers are a promising alternative to petroleum-based plastic raw materials. They are bio-based, non-toxic and degradable under environmental conditions. In addition to the homopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad range of applications and are easier to process in comparison to PHB. The most prominent representative from this group of bio-copolymers is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this article, we show a new kinetic model that describes the PHBV production from fructose and propionic acid in Cupriavidus necator (C. necator). The developed model is used to analyze the effects of process parameter variations such as the CO2 amount in the exhaust gas and the feed rate. The presented model is a valuable tool to improve the microbial PHBV production process. Due to the coupling of CO2 online measurements in the exhaust gas to the biomass production, the model has the potential to predict the composition and the current yield of PHBV in the ongoing process.


Sign in / Sign up

Export Citation Format

Share Document