Analytical Models of High-Speed RLC Interconnect Delay for Complex and Real Poles

2017 ◽  
Vol 25 (6) ◽  
pp. 1831-1841 ◽  
Author(s):  
Muhammad S. Ullah ◽  
Masud H. Chowdhury
Author(s):  
James F. Walton ◽  
Michael R. Martin

Abstract Results of a program to investigate internal rotor friction destabilizing effects are presented. Internal-friction-producing joints were shown to excite the rotor system first natural frequency, when operating either below or above the first critical speed. The analytical models used to predict the subsynchronous instability were also confirmed. The axial spline joint demonstrated the most severe subsynchronous instability. The interference fit joint also caused subsynchronous vibrations at the first natural frequency but these were bounded and generally smaller than the synchronous vibrations. Comparison of data from the two test joints showed that supersynchronous vibration amplitudes at the first natural frequency were generally larger for the interference fit joint than for the axial spline joint. The effects of changes in imbalance levels and side loads were not distinguishable during testing because amplitude-limiting bumpers were required to restrict orbits.


Author(s):  
Timothy J. Burns ◽  
Tony L. Schmitz

The dynamics of a spindle-holder-tool (SHT) system during high-speed machining is sensitive to changes in tool overhang length. A well-known method for predicting the limiting depth of cut for avoidance of tool chatter requires a good estimate of the tool-point frequency response (FRF) of the combined system, which depends upon the tool length. In earlier work, a combined analytical and experimental method has been discussed, that uses receptance coupling substructure analysis (RCSA) for the rapid prediction of the combined spindle-holder-tool FRF. The basic idea of the method is to combine the measured direct displacement vs. force receptance (i.e., frequency response) at the free end of the spindle-holder (SH) system with calculated expressions for the tool receptances based on analytical models. The tool was modeled as an Euler-Bernoulli (EB) beam, the other three spindle-holder receptances were set equal to zero, and the model for the connection with the tool led to a diagonal matrix. The main conclusion of the earlier work was that there was an exponential trend in the dominant connection parameter, which enabled interpolation between tip receptance data for the longest and shortest tools in the combined SHT system. Thus, a considerable savings in time and effort could be realized for the particular SHT system. A question left open in the earlier work was: how general is this observed exponential trend? Here, to explore this question further, an analytical EB model is used for the SH system, so that all four of its end receptances are available, and the tool is again modeled as a free-free EB beam that is connected to the SH by a specified connection matrix, that includes nonzero off-diagonal terms. This serves as the “exact” solution. The approximate solution is once again formed by setting all but one SH receptance equal to zero, and the connection parameters are determined using nonlinear least squares software. Both diagonal and full connection matrices are investigated. The main result is that, for this system, in the case of a diagonal connecting matrix, there is no apparent trend in the dominant connecting spring stiffness with tool overhang length. However, in the full connecting matrix case, a general constant trend is observed, with some interesting exceptions.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4163
Author(s):  
Avi Karsenty

A comprehensive review of the main existing devices, based on the classic and new related Hall Effects is hereby presented. The review is divided into sub-categories presenting existing macro-, micro-, nanoscales, and quantum-based components and circuitry applications. Since Hall Effect-based devices use current and magnetic field as an input and voltage as output. researchers and engineers looked for decades to take advantage and integrate these devices into tiny circuitry, aiming to enable new functions such as high-speed switches, in particular at the nanoscale technology. This review paper presents not only an historical overview of past endeavors, but also the remaining challenges to overcome. As part of these trials, one can mention complex design, fabrication, and characterization of smart nanoscale devices such as sensors and amplifiers, towards the next generations of circuitry and modules in nanotechnology. When compared to previous domain-limited text books, specialized technical manuals and focused scientific reviews, all published several decades ago, this up-to-date review paper presents important advantages and novelties: Large coverage of all domains and applications, clear orientation to the nanoscale dimensions, extended bibliography of almost one hundred fifty recent references, review of selected analytical models, summary tables and phenomena schematics. Moreover, the review includes a lateral examination of the integrated Hall Effect per sub-classification of subjects. Among others, the following sub-reviews are presented: Main existing macro/micro/nanoscale devices, materials and elements used for the fabrication, analytical models, numerical complementary models and tools used for simulations, and technological challenges to overcome in order to implement the effect in nanotechnology. Such an up-to-date review may serve the scientific community as a basis for novel research oriented to new nanoscale devices, modules, and Process Development Kit (PDK) markets.


Author(s):  
Martin Gronek ◽  
Torsten Rottenbach ◽  
Frank Worlitz

Within a subproject of the RAPHAEL-Program, which is part of the 6th EURATOM Framework Program supervised by the European Commission it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. As in the RAPHAEL program the subproject “Component Development” deals with R&D on components of High Temperature Reactor Technology (HTR), a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic Radial Bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The Scope of this R&D-Project, which will be described more detailed in this contribution, includes the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System, the modification of the completely AMB-supported test facility FLP500 with a radial PMB and the experimental tests and validation of the analytical models to provide recommendations for the investigated blower application as an HTR-component. Furthermore, the effects occurring during the modification of the test facility and the approach that was necessary to solve unexpected problems will be described.


1993 ◽  
Vol 314 ◽  
Author(s):  
R. D. Wilson ◽  
J. A. Hawk ◽  
J. H. Devletian

AbstractCapacitor discharge welding (CDW) is a rapid solidification joining process where high cooling rates (106 K/s) are obtained as a result of the large weld surface area to small weld volume. The objective of this study, directed by the U.S. Bureau of Mines and the Oregon Graduate Institute of Science and Technology, was to use ultra-high speed photography to quantify transient arc behavior during the CDW cycle. The simple cylindrical geometries of the CD welds have been used to formulate analytical models which are compared to the high speed photographs of the welding process. The high speed photographs were analyzed with respect to welding time and process weld variables and compared to predicted values from the analytical model. The detailed photographic analyses revealed that material is continuously ejected as a plasma from the weld area due to induced magnetic forces, rather than having the liquid metal squeezed out of the weld upon contact. It was found that welding time was controlled by tip length and drop height. Results from high speed photographs found the arc travel speed around tube welds to be 109m/s. Finally, the high speed photographs revealed that the velocity of arc propagation during ignition was fast enough to allow the CDW process to be modelled as onedimensional heat flow.


Author(s):  
Leila Choobineh ◽  
Ankur Jain ◽  
Jared Jones

Thermal modeling and temperature prediction in 3D ICs are important for improving performance and reliability. A number of numerical and analytical models have been developed for thermal analysis of 3D ICs. However, there is a relative lack of experimental work to determine key physical parameters in 3D IC thermal design. One such important key parameter is the inter-die thermal resistance between adjacent die bonded together. This paper describes a novel experimental method to measure the value of inter-die thermal resistance between two die in a 3D IC. The effect of heating one die on the temperature of the other die in a two-die stack is measured over a short time period using high speed data acquisition to negate the effect of boundary conditions. Numerical simulation is performed and based on a comparison between experimental data and the numerical model, the inter-die thermal resistance between two die is determined. There is good agreement between experimental measurement and theoretically estimated value of the inter-die thermal resistance. Results from this paper are expected to assist in thermal design and management of 3D ICs.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 265
Author(s):  
Ronald Barrett-Gonzalez ◽  
Nathan Wolf

This paper covers a class of actuators for modern high speed, high performance subscale aircraft. The paper starts with an explanation of the challenges faced by micro aircraft, including low power, extremely tight volume constraints, and high actuator bandwidth requirements. A survey of suitable actuators and actuator materials demonstrates that several classes of piezoceramic actuators are ideally matched to the operational environment. While conventional, linear actuation of piezoelectric actuators can achieve some results, dramatic improvements via reverse-biased spring mechanisms can boost performance and actuator envelopes by nearly an order of magnitude. Among the highest performance, low weight configurations are post-buckled precompressed (PBP) actuator arrangements. Analytical models display large deflections at bandwidths compatible with micro aircraft flight control speed requirements. Bench testing of an example PBP micro actuator powered low aspect ratio flight control surface displays +/−11° deflections through 40 Hz, with no occupation of volume within the aircraft fuselage and good correlation between theory and experiment. A wind tunnel model of an example high speed micro aircraft was fabricated along with low aspect ratio PBP flight control surfaces, demonstrating stable deflection characteristics with increasing speed and actuator bandwidths so high that all major aeromechanical modes could be easily controlled. A new way to control such a PBP stabilator with a Limit Dynamic Driver is found to greatly expand the dynamic range of the stabilator, boosting the dynamic response of the stabilator by more than a factor of four with position feedback system engaged.


1991 ◽  
Vol 113 (2) ◽  
pp. 290-301 ◽  
Author(s):  
V. H. Garnier ◽  
A. H. Epstein ◽  
E. M. Greitzer

Stall inception has been studied in two low-speed compressors (a single-stage and a three-stage) and in a high-speed three-stage compressor, using temporally and spatially resolved measurements. In all three machines, rotating stall was preceded by a period in which small-amplitude waves were observed traveling around the circumference of the machine at a speed slightly less than the fully developed rotating stall cell speed. The waves evolved smoothly into rotating stall without sharp changes in phase or amplitude, implying that, in the machines tested, the prestall waves and the fully developed rotating stall are two stages of the same phenomenon. The growth rate of these disturbances was in accord with that predicted by current analytical models. The prestall waves were observed both with uniform and with distorted inflow, but were most readily discerned with uniform inflow. Engineering uses and limitations of these waves are discussed.


Sign in / Sign up

Export Citation Format

Share Document