Antimicrobial resistance 1979-2009 at Karolinska hospital, Sweden: normalized resistance interpretation during a 30-year follow-up on Staphylococcus aureus and Escherichia coli resistance development

Apmis ◽  
2010 ◽  
Vol 118 (9) ◽  
pp. 621-639 ◽  
Author(s):  
GÖRAN KRONVALL
2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S723-S724
Author(s):  
Vandarith Nov ◽  
Darapheak Chau ◽  
Chhorvann Chhea

Abstract Background Antimicrobial resistance (AMR) is a major and growing global public health problem. The Cambodia Ministry of Health established a pilot laboratory-based AMR surveillance system for blood specimens in 2017. The objective of this study is to characterize AMR among pathogenic isolates from blood samples. Methods A retrospective analysis was performed using one year of data from a pilot AMR Surveillance system in Cambodia. Four blood culture isolate pathogens were included: Escherichia coli, Klebsiella pneumoniae, Salmonella Typhi /Salmonella Paratyphi A and Staphylococcus aureus. Blood culture isolates that were referred from eleven sentinel sites were analyzed at the National Public Health Laboratory for identification. Antibiotic susceptibility testing (AST) was done using disk diffusion, minimum inhibitory concentration method following Clinical Laboratory Standard Institute (CLSI) guidelines. Results Among 214 pathogenic isolates from blood samples, E.coli was the most common (56.1%), followed by Salmonella Typhi/Salmonella Paratyphi A (18.7%), Staphylococcus aureus (13.5%), and Klebsiella pneumoniae (11.7%). Methicillin Resistance Staphylococcus aureus (MRSA) was detected in half of the isolates. E.coli was resistant to ampicillin (94.4%), trimethoprim-sulfamethoxazole (84.5%), and ceftriaxone (79.2%). Salmonella Typhi was resistant to ampicillin (73.3%) and trimethoprim-sulfamethoxazole (60.0%) and Salmonella Paratyphi A were resistant to fluoroquinolones (91.7%). For last resort antibiotics, E.coli was resistant to carbapenem groups (3.2% for imipenem, 4.9% for meropenem, and 5.0% for ertapenem). Klebsiella pneumoniae was not resistant to any groups. Conclusion E.coli was found at high rates in blood samples and was resistant to common antibiotics used in Cambodia. These pilot data show the importance of establishing a national AMR surveillance system in Cambodia to monitor AMR trends following GLASS guidelines. Disclosures All Authors: No reported disclosures


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Fanta Gashe ◽  
Eshetu Mulisa ◽  
Mekidim Mekonnen ◽  
Gemechu Zeleke

Background. Drug resistant microorganisms lead to an increase in morbidity and mortality as they boost the risk of inappropriate therapy. Hence, data on antimicrobial resistance help define the best possible treatment for individual patients. Therefore, this study aimed to screen the antimicrobial resistant profile of 3rd generation cephalosporin drugs in Jimma University Specialized Teaching Hospital. Methods. A hospital based prospective cross-sectional study was conducted in Jimma University Specialized Hospital (JUSH) from April to August 2016. The clinical samples such as wound swab, urine, sputum, and stool were collected from hospitalized patients. Then, bacterial species were isolated and identified as per the standard microbiological methods. Antimicrobial susceptibility tests were carried out using various antimicrobial discs by Kirby–Bauer disc diffusion method. Results. Totally, 248 bacterial isolates were obtained from 154 (62.1%) male and 94 (37.9%) female patients. Escherichia coli (25.4%) and Staphylococcus aureus (19.0 %) were the predominant organisms isolated from specimens. About 140 (56.5%) and 149 (60.1%) of the total bacterial isolates were found to be resistant to ceftriaxone and ceftazidime, respectively. The majority of Escherichia coli isolates 46 (73%) were resistant to ceftriaxone and 41 (65%) of them were resistant to ceftazidime. Staphylococcus aureus, which accounted 19% of the total bacterial isolates, showed 23.4% and 34% resistance to ceftriaxone and ceftazidime, respectively. Among the bacterial strains revealing resistant to ceftriazone and ceftazidime, about 109 (44%) and 108 (43.5%) of them were resistant to two, three, or four other drugs, respectively. Conclusion. Bacterial resistance towards third-generation cephalosporin (ceftriaxone and ceftazidime) is escalating as more than half of the isolated strains demonstrated resistance to these drugs. Moreover, these strains also revealed multidrug resistance mainly against clinically used drugs which could render therapy unsuccessful. Therefore, in clinical use appropriate medications should be selected based on the data obtained from antimicrobial susceptibility tests.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1776
Author(s):  
Sang-Ik Oh ◽  
Seungmin Ha ◽  
Jae-Hee Roh ◽  
Tai-Young Hur ◽  
Jae Gyu Yoo

The prevalence of antimicrobial-resistant (AMR) Escherichia coli is typically higher in the feces of young dairy calves than in the feces of older cattle; however, the underlying factors contributing to this difference are poorly understood. In this study, AMR fecal E. coli from neonatal calves were characterized both at phenotypic and genotypic levels by individual follow-up sampling. Antimicrobial resistance profiles of E. coli isolates from the maternal colostrum were also determined. Most of the fecal AMR E. coli emerged in the calves at 2–3 days of age. The tetB was the most prevalent resistance gene detected among AMR fecal E. coli from <7-day-old calves, and was also detected in two isolates from the maternal colostrum. Weekly sampling revealed changes in the phenotype of AMR fecal E. coli as the calves aged. More than half of the fecal E. coli isolates acquired additional resistance to beta-lactams by 21–28 days of age, and minimum inhibitory concentrations were higher in ceftiofur-exposed calves than in unexposed calves. Our findings reveal the dynamic changes in AMR fecal E. coli from neonatal calves, and suggest that the feeding of colostrum and ceftiofur administration contribute to the higher prevalence of AMR E. coli in young dairy calves.


2020 ◽  
Vol 73 (4) ◽  
Author(s):  
Courtney K Lawrence ◽  
Chris Sathianathan ◽  
Mauro Verrelli ◽  
Philippe Lagacé-Wiens ◽  
Robert Ariano ◽  
...  

Background: Given the morbidity and mortality associated with bloodstream infections in hemodialysis patients, understanding the microbiology is essential to optimizing treatment in this high-risk population.Objectives: To conduct a retrospective surveillance study of clinical blood isolates from adult hemodialysis patients, and to predict the microbiological coverage of empiric therapies for bloodstream infections in this population.Methods: Clinical blood isolate data were collected from the 4 main outpatient hemodialysis units in Winnipeg, Manitoba, from 2007 to 2014. The distribution of organisms and antimicrobial susceptibilities were characterized. When appropriate, changes over time were tested using time series analysis. Study data were used to predict and compare the microbiological coverage of various empiric therapies for bloodstream infections in hemodialysis patients.Results: The estimated annual number of patients receiving chronic hemodialysis increased steadily over the study period (p < 0.001), whereas the number of blood isolates increased initially, then decreased significantly, from 180 in 2011 to 93 in 2014 (p = 0.04). Gram-positive bacteria represented 72.6% (743/1024) of isolates, including Staphylococcus aureus (36.9%, 378/1024) and coagulase-negative staphylococci (23.1%, 237/1024). Only 26.1% (267/1024) of the isolates were gram-negative bacteria, the majority Enterobacteriaceae. The overall rate of methicillin resistance in S. aureus was 17.5%, and although annual rates were variable, there was a significant increase over time (p = 0.04). Antibiotic resistance in gram-negative bacteria was relatively low, except in Escherichia coli, where 13.5% and 16.2% of isolates were resistant to ceftriaxone and ciprofloxacin, respectively. Empiric therapy with vancomycin plus an agent for gram-negative coverage was predicted to cover 98.8% to 99.7% of blood isolates from hemodialysis patients, whereas cefazolin plus an agent for gram-negative coverage would cover only 67.5% to 68.4%.Conclusions: In an era of increasing antimicrobial resistance, data such as these and ongoing surveillance are essential components of antimicrobial stewardship in the hemodialysis population.Keywords: hemodialysis, microbiology, surveillance, resistance, antimicrobial stewardshipRÉSUMÉ Contexte : Étant donné la morbidité et la mortalité associées aux infections du sang parmi les patients en hémodialyse, la compréhension de la microbiologie est essentielle à l’optimisation du traitement de cette population exposée à un risque élevé.Objectifs : Mener une étude de surveillance rétrospective des isolats de sang cliniques des patients adultes en hémodialyse et prédire la couverture microbiologique des thérapies empiriques contre les infections du sang dans cette population.Méthodes : Les données relatives aux isolats de sang cliniques ont été recueillies dans les quatre unités ambulatoires principales d’hémodialyse à Winnipeg (Manitoba), entre 2007 et 2014. La caractérisation a porté sur la distribution des organismes et les susceptibilités aux antimicrobiens. L’évolution dans le temps a été testée au besoin à l’aide d’une analyse chronologique. Les données de l’étude ont permis de prédire et de comparer la couverture microbiologique de diverses thérapies empiriques contre les infections du sang pour les patients en hémodialyse.Résultats : On estime que le nombre annuel de patients recevant une hémodialyse chronique a augmenté régulièrement au cours de la période de l’étude (p < 0,001); le nombre d’isolats de sang a tout d’abord augmenté, puis il a grandement diminué : de 180 en 2011, il est passé à 93 en 2014 (p = 0,04). Les bactéries à Gram positif représentaient 72,6 % (743/1024) des isolats, y compris les Staphylococcus aureus (36,9 %, 378/1024) et les staphylocoques à coagulase négative (23,1 %, 237/1024). Seulement 26,1 % (267/1024) des isolats étaient des bactéries à Gram négatif, la majorité desquelles étant des Enterobacteriaceae. Le taux général de résistance à la méticilline de S. aureus était de 17,5 %, et bien que les taux annuels étaient variables, une augmentation importante a été observée avec le temps (p = 0,04). La résistance aux antibiotiques des bactéries à Gram négatif était relativement faible, sauf Escherichia coli, où respectivement 13,5 % et 16,2 % des isolats étaient résistants à la ceftriaxone et à la ciprofloxacine. On prévoyait que la thérapie empirique à la vancomycine associée à un agent pour la couverture à Gram positif couvrirait de 98,8 % à 99,7 % des isolats de sang des patients en hémodialyse, tandis que la céfazoline associée à un agent de la couverture à Gram négatif ne couvrirait que 67,5 % à 68,4 %.Conclusions : À une époque qui se caractérise par une augmentation de la résistance aux antimicrobiens, des données comme celles-ci et celles portant sur la surveillance continue sont des composantes essentielles de la bonne gestion de l’utilisation des antimicrobiens pour les patients adultes en hémodialyse.Mots-clés : hémodialyse, microbiologie, surveillance, résistance, gestion de l’utilisation des antimicrobiens


Author(s):  
A. Aksoy

Background: Mycoplasma bovis (Gram-positive bacteria) belongs the class Mollicutes and to the family Mycoplasmataceae (Maunsell and Donovan, 2009). It is a cell wall-less bacterium and are instead enveloped by a complex plasma membrane. In cattle, M. bovis is widely known causes various diseases, such respiratory disease, mastitis, arthritis and otitis.Methods: The present study was aimed to determine the antimicrobial susceptibility and identify the genes for antimicrobial resistance of Mycoplasma bovis PG45, Staphylococcus aureus and Escherichia coli. M. bovis PG45, S. aureus and E.coli were subjected to test for their sensitivity to various clinically important antibiotics (Cefotaxime, Cefuroxime, Cefaclor Cefalexin, Ofloxacin, Norfloxacin, Nalidixic acid, Amikacin, Ampicillin, Oxacilin, Amoxyclav, Rifampicin, Penicillin G and Tylosin). The minimal inhibitory concentration (MIC) of each antimicrobial agent was determined by applying an agar dilution method. Polymerase Chain reaction (PCR) was used to amplify specific DNA fragments and thus to determine the presence or absence of a target gene (VspA, tet k and tetA). Result: Showed the MIC values and the presence of VspA, tetK and tetA in M. bovis PG45, S. aureus and E. coli respectively.


Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Francesca Licata ◽  
Angela Quirino ◽  
Davide Pepe ◽  
Giovanni Matera ◽  
Aida Bianco ◽  
...  

Background: Antimicrobial resistance (AMR) is one of the most concerning issues in medicine today. The objectives of this study were to investigate the AMR distribution of the blood-borne pathogens isolated over a two-year period in an Italian region. Methods: A retrospective electronic record review of laboratory-confirmed bloodstream infections (BSIs) was done, and data from three major diagnostic laboratories were used. Twelve invasive clinically important bacteria species were included in the sample. Results: During the study period, 1228 positive BSIs were collected. The most common pathogens were Coagulase-negative Staphylococcus (CoNS) (29.7%), Staphylococcus aureus (19.1%) and Escherichia coli (15.9%). With regard to the AMR pattern, 31.7% of CoNS and 28.1% of Staphylococcus aureus were oxacillin-resistant, and almost half of the Enterococci showed resistance to high-level gentamicin. Among Gram-negative species, 11.7% of Escherichia coli and 39.5% of Klebsiella pneumoniae were carbapenem-resistant. Among the non-fermentative Gram-negative bacteria, the most frequently combined AMR pattern was aminoglycosides and fluoroquinolones (48.4% in A. baumannii and 14.6% in P. aeruginosa). Conclusion: The results display an alarming prevalence of AMR among hospital isolated pathogens, consistently higher than the European average. Information from surveillance systems to better characterize the trend in the incidence of AMR at local and national levels is needed.


2019 ◽  
Vol 72 (5) ◽  
pp. 760-764
Author(s):  
Aidyn G. Salmanov ◽  
Olena A. Dyndar ◽  
Yuriy P. Vdovychenko ◽  
Tetiana R. Nykoniuk ◽  
Igor V. Maidannyk ◽  
...  

Introduction: Surgical site infections (SSIs) are associated with increased morbidity and mortality. Scant information is available on the SSI in Ukrainian hospitals. The aim: to determine the incidence of SSIs and estimates antimicrobial resistance of the major responsible pathogens in Kyiv city hospitals. Materials and methods: This study was conducted from January 2011 to December 2013 in 3 hospitals. Definitions of SSIs were adapted from the CDC/NHSN. The identification and antimicrobial susceptibility of cultures were determined, using automated microbiology analyzer. Some antimicrobial susceptibility test used Kirby - Bauer antibiotic testing. Results: Among 9,162 patients, 1,912 (20.9%) SSIs were observed. The high SSI case in appendectomy (29.8 %), gastric, small and large bowel surgeries (28.4 %), cholelithiasis (25.7%), and orthopedic procedures (22.9 %). Low infection rate in excision of dermoid cysts, lipoma (5.3%) and lower segment caesarean structure (6.5%). Staphylococcus aureus were most commonly reported, accounting for 27,8% of all organisms, followed by Escherichia coli (18.4 %), Pseudomonas aeruginosa (11.9 %) and Enterococcus faecalis (11.6 %). The antimicrobial resistance in the isolates associated with SSIs showed, among the Gram-positive bacteria, that 43.8% and 4.7% of CoNS isolates were β-lactam (oxacillin) - and glycopeptide (teicoplanin) - resistant, respectively. Meticillin resistance was reported in 35.7 % of S. aureus isolates Conclusions: SSIs and antimicrobial resistance of the responsible pathogens is an actually problem. One essential step in the prevention of SSIs is to implement a national system for their surveillance.


2020 ◽  
Vol 44 ◽  
pp. 1
Author(s):  
Kasim Allel ◽  
Patricia García ◽  
Jaime Labarca ◽  
José M. Munita ◽  
Magdalena Rendic ◽  
...  

Objective. To identify socioeconomic factors associated with antimicrobial resistance of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in Chilean hospitals (2008–2017). Methods. We reviewed the scientific literature on socioeconomic factors associated with the emergence and dissemination of antimicrobial resistance. Using multivariate regression, we tested findings from the literature drawing from a longitudinal dataset on antimicrobial resistance from 41 major private and public hospitals and a nationally representative household survey in Chile (2008–2017). We estimated resistance rates for three priority antibiotic–bacterium pairs, as defined by the Organisation for Economic Co-operation and Development; i.e., imipenem and meropenem resistant P. aeruginosa, cloxacillin resistant S. aureus, and cefotaxime and ciprofloxacin resistant E. coli. Results. Evidence from the literature review suggests poverty and material deprivation are important risk factors for the emergence and transmission of antimicrobial resistance. Most studies found that worse socioeconomic indicators were associated with higher rates of antimicrobial resistance. Our analysis showed an overall antimicrobial resistance rate of 32.5%, with the highest rates for S. aureus (40.6%) and the lowest for E. coli (25.7%). We found a small but consistent negative association between socioeconomic factors (income, education, and occupation) and overall antimicrobial resistance in univariate (p < 0.01) and multivariate analyses (p < 0.01), driven by resistant P. aeruginosa and S. aureus. Conclusion. Socioeconomic factors beyond health care and hospital settings may affect the emergence and dissemination of antimicrobial resistance. Preventing and controlling antimicrobial resistance requires efforts above and beyond reducing antibiotic consumption.


2019 ◽  
Vol 47 (1) ◽  
Author(s):  
Zhe Zhang ◽  
Feng Yang ◽  
Xin-pu Li ◽  
Jin-yin Luo ◽  
Long-hai Liu ◽  
...  

Background: Bovine mastitis, a global disease that is responsible for large economic losses each year due to lower milk yield and reduced milk quality. In some countries, especially in China, Streptococcus agalactiae has become one of the most frequently detected pathogen. Antibiotic treatment and vaccine immunization are important strategies for the control of infectious diseases. The main objective of the present study was to evaluate distribution of bovine mastitis pathogens and antimicrobial resistance of S. agalactiae, and contribute to the treatment of bovine mastitis.Materials, Methods & Results:Clinical mastitis samples (n= 1,122) were collected from 27 dairy farms located in 15 different provinces of China during 2012-2018. Thepathogens were identified by 16S rDNA method. Antimicrobial susceptibility was assessed by disc diffusion method. Molecular characteristics was distinguished based on PCR. The results showed that the main pathogens were Streptococcus agalactiae (n= 324, 26.2%), Escherichia coli (n= 287, 23.2%), and Staphylococcus aureus (n= 131, 10.6%). The serotypes of Streptococcus agalactiae were serotype II (53.6%), Ia (44 %) and VII (1.2%), respectively. Streptococcus agalactiae were resistant to kanamycin (93.8%), gentamicin (49.4%), vancomycin (49.4%), tetracycline (35.8%), clindamycin (34.6%) and erythromycin (32.1%). The main resistance genes were ermA (53.1%) and ermB (85.2%). Resistance to erythromycin was attributed to the genes ermA (P < 0.05) and resistance to tetracycline was attributed to the genes tetK, tetM, tetO (P < 0.01). The virulence genes scpB (81.4%), cyl (100%), glnA (76.6%), cfb (98.8%), hylB (98.8%), scaA (69.1%) were detected in almost all isolates.Discussion: In the present study, Streptococcus agalactiae, Escherichia coli and Staphylococcus aureus were the pathogens isolated most frequently from clinical mastitis. In the case of S. agalactiae, we performed capsular serotyping of isolates. As a result, serotype II (53.6%), Ia (44 %) and VII (1.2%) were detected whichrevealed variation in the distinct geographical areas. We found that serotypes (Ia and II) and β-hemolytic have significant correlation (P < 0.01) in all isolated strains. We made an assumption that either in processes of capsular and haemolytic appearance effected the expression of another. The unclear mechanism remains to be resolved in the future. Penicillin was recommended as a preferred antibiotic for the treatment of both human and bovine S. agalactiae infection. In the present study, resistance to erythromycin and clindamycin were observed in 32% and 34.6% of our strains, respectively. The results indicated that the ermB gene was most frequent among the erythromycin-resistant S. agalactiae. However, we found that the susceptibility to erythromycin and gene ermA have a significant interaction, while susceptibility to erythromycin and gene ermB have a not significant interaction by analyzing the relationship of phenotypic and genotypic resistance. The severity of S. agalactiae infections may be determined by various virulence factors. Surface enzyme ScpB, a C5a peptidase, encode by scpB gene, could promote bacterial invasion of epithelial cells by attenuating recruitment of polymorphonuclear leukocytes to the site of infection. In the present study, the scpB gene was found in 81.4% of all strains. The results suggested the cyl, cfb, hylB and scpB genes may play an important role in the virulence of Streptococcus agalactiae pathogens.


Sign in / Sign up

Export Citation Format

Share Document