Fracture Analysis of Ceramic Proppants

1983 ◽  
Vol 105 (2) ◽  
pp. 128-133 ◽  
Author(s):  
S. R. Swanson ◽  
R. A. Cutler

Small particles (traditionally sand) are mixed with fluid in hydraulic fracturing treatments of petroleum wells to stimulate production. The solid particles, called proppants, are used to prop open the fracture as hydraulic pressure is reduced. Deep wells can demand higher strength than provided by sand, while low specific gravity is desired to improve proppant transport. This paper considers the stress and strength analysis of proppants, and considers the use of high-strength ceramics as possible proppants. The stresses produced by interparticle contact are analyzed, which along with a failure criterion based on a critically stressed volume lead to a fracture prediction. The results show that ceramics can give adequate strength, even when used in low-density forms such as with high porosity or as hollow spheres. Laboratory tests of the effect of closure pressure on fluid permeability are seen to be in good agreement with the fracture predictions.

2018 ◽  
Vol 55 (1) ◽  
pp. 1-4
Author(s):  
Elena Felicia Beznea ◽  
Ionel Chirica ◽  
Adrian Presura ◽  
Ionel Iacob

The paper is treating the strength analysis of the main deck structure of an inland navigation catamaran for 30 passengers. The main deck should have high stiffness and high strength to resist to external loading and endure high stresses from combined bending and torsion loads. Different materials for sandwich structure of the deck have been analysed by using the Finite Element Method in order to determine the solution which accomplish better designing criteria regarding allowable stress and deformations and total weight.


2015 ◽  
Vol 1119 ◽  
pp. 752-755
Author(s):  
Chang Zheng Sun ◽  
Zheng Wang

Optimization of mix proportion parameter ,Using ordinary raw materials makes a C80 high performance self-compacting concrete;By joining a homemade perceptual expansion agent, significantly improve the early strength of concrete and effective to solve the high strength of self-compacting concrete caused by gelled material consumption big contraction;Further study on the working performance of high-strength self-compacting concrete, age strength, analysis the influence factors of concrete are discussed.


2019 ◽  
pp. 39-46
Author(s):  
Vasiliy P. Ovchinnikov ◽  
Pavel V. Ovchinnikov ◽  
Alexander V. Melekhov ◽  
Oksana V. Rozhkova

The development of the global oil industry is closely related to the exploration of new oil and gas fields through the drilling new deep and ultra-deep wells, as well as the application of modern methods of hydrocarbon production. Usage of new methods of production, increasing the depth of the wells, bottomhole temperatures and pressures sets strict requirements and restrictions for the applied plugging materials. Oil well cements must have a long time of thickening to successfully complete the cementing process, grouting stone must have high strength characteristics, heat-resistant properties at high temperatures and provide reliable isolation of the annulus, also have corrosion resistance, ensure durability of the well lining.


2011 ◽  
Vol 338 ◽  
pp. 477-480 ◽  
Author(s):  
Hong Chang Ding ◽  
Lin Jing Xiao

For high-speed permanent magnet (PM) electrical machine, the PM material has very small tensile stress, and it can’t withstand the huge centrifugal force. So, a high-strength sleeve with interference fit is necessary to protect the PM. This paper mainly analyzes the strength of rotor sleeve and PM. It deduces the theoretical calculation method of the strength according to Lame equation, and it also analyzes the stress of sleeve and PM by ANSYS Workbench. The result show that the theoretical calculation value is closely to the ANSYS result, and it can meet the requirements of protecting the permanent magnet in high rotation speed.


2011 ◽  
Vol 328-330 ◽  
pp. 435-440
Author(s):  
Jun Liao ◽  
Lan Shan ◽  
Yan Feng

The establishment of FCEV finite element model of the subframe is based on Hypermesh platform, and a new subframe structure is designed in accordance with the stiffness and strength analysis on the original subframe in all conditions. High-strength steel materials are used to optimize the design of this new structure, which result in the optimal size. Through the comparative analysis of the strength, stiffness, mode shape and quality on new subframe and the original one, it is verified that the design of the new subframe is reasonable and feasible.


2011 ◽  
Vol 672 ◽  
pp. 141-144 ◽  
Author(s):  
Ioan Vida-Simiti ◽  
Nicolaie Jumate ◽  
Emil Bruj ◽  
Niculina Sechel ◽  
György Thalmaier ◽  
...  

In this work, hollow spherical nickel based superalloy powders obtained by liquid phase atomization were used. The obtained powder was divided into six size particle ranges between 200 µm and 630 µm using a shatter box. Samples from all six ranges were obtained by spreading the powder into the sintering die and consolidating them by sintering at 900°C and 1000°C for 30 minutes in vacuum (10-4 Torr). The metallic foams obtained by sintering hollow particles presents high porosity, and can be used as thermal barriers, catalyst support, shock absorbers or lightweight structural elements.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 712 ◽  
Author(s):  
Lijie Zhou ◽  
Shengcheng Zhai ◽  
Yiming Chen ◽  
Zhaoyang Xu

Under the current situation of frequent oil spills, the development of green and recyclable high-efficiency oil-absorbing aerogel materials has attracted wide attention from researchers. In this study, we report a high-strength, three-dimensional hydrophobic cellulose nanofiber (CNF)/polyvinyl alcohol (PVA)/graphene oxide (GO) composite aerogel with an anisotropic porous structure, which was fabricated by directional freeze-drying technology using anisotropically grown ice crystals as a template, followed by hydrophobic treatment with a simple dip coating process. The prepared composite aerogel presented anisotropic multi-level pore microstructures, low density (17.95 mg/cm3) and high porosity (98.8%), good hydrophobicity (water contact angle of 142°) and great adsorption capacity (oil absorption reaching 96 times its own weight). More importantly, the oriented aerogel had high strength, whose compressive stress at 80% strain reached 0.22 MPa and could bear more than 22,123 times its own weight without deformation. Therefore, the CNF/PVA/GO composite aerogel prepared by a simple and easy-to-operate directional freeze-drying method is a promising absorbent for oil-water separation.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Shilong Peng ◽  
Chuanxin Rong ◽  
Hua Cheng ◽  
Xiaojian Wang ◽  
Mingjing Li ◽  
...  

As coal resources must be mined from ever deeper seams, high-strength, high-performance concrete shaft linings are required to resist the load of the soil surrounding the deep freezing well. In order to determine the optimal concrete mix for the unique conditions experienced by such high-strength high-performance reinforced concrete shaft lining (HSHPRCSL) structures in deep freezing wells, an experimental evaluation of scaled HSHPRCSL models was conducted using hydraulic pressure load tests. It was observed that as the specimens ruptured, plastic bending of the circumferential reinforcement occurred along the failure surface, generated by compression-shear failure. These tests determined that HSHPRCSL capacity was most affected by the ultimate concrete uniaxial compressive strength and the thickness-diameter ratio and least affected by the reinforcement ratio. The experimental results were then used to derive fitting equations, which were compared with the results of theoretical expressions derived using the three-parameter strength criterion for the ultimate bearing capacity, stress, radius, and load in the elastic and plastic zones. The proposed theoretical equations yielded results within 8% of the experimentally fitted results. Finally, the finite element analysis method is used to verify the abovementioned results, and all errors are less than 12%, demonstrating reliability for use as a theoretical design basis for deep HSHPRCSL structures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shennan Wang ◽  
Kai Li ◽  
Qi Zhou

Abstract A delignified wood template with hydrophilic characteristics and high porosity was obtained by removal of lignin. Gelatin was infiltrated into the delignified wood and further crosslinked with a natural crosslinker genipin to form hydrogels. The composite hydrogels showed high mechanical strength under compression and low swelling in physiological condition. The effect of genipin concentrations (1, 50 and 100 mM) on structure and properties of the composite hydrogels were studied. A porous honeycomb structure with tunable pore size and porosity was observed in the freeze-dried composite hydrogels. High elastic modulus of 11.82 ± 1.51 MPa and high compressive yield stress of 689.3 ± 34.9 kPa were achieved for the composite hydrogel with a water content as high as 81%. The equilibrium water uptake of the freeze-dried hydrogel in phosphate buffered saline at 37 °C was as low as 407.5%. These enables the delignified wood structure an excellent template in composite hydrogel preparation by using infiltration and in-situ synthesis, particularly when high mechanical strength and stiffness are desired.


Sign in / Sign up

Export Citation Format

Share Document