Effects of carriage flexibility on friction force in linear ball guides

2021 ◽  
pp. 1-28
Author(s):  
Van-Canh Tong ◽  
Gyungho Khim ◽  
Seong-Wook Hong

Abstract This paper presents the effects of carriage flexibility on the friction force in linear ball guides, which includes hydrodynamic rolling friction, elastic hysteresis friction, slip friction, and drag friction. To this end, we developed a computational model for the friction force in linear ball guides that accounts for the carriage flexibility. The model was validated through experiments, and the results prove that it provides more accurate friction-force estimates than the conventional model under the assumption of a rigid carriage. Subsequently, we examined the effects of external load, preload, and speed on the friction force. Among several friction components, hydrodynamic rolling friction makes a major contribution to the total friction force. Ball contact loads, which significantly vary with carriage flexibility, were found to influence the hydrodynamic rolling, elastic hysteresis, and slip friction forces. The proposed model considering carriage flexibility in linear ball guides is expected to find use in the design and operation of linear-ball-guide systems.

2011 ◽  
Vol 471-472 ◽  
pp. 733-738 ◽  
Author(s):  
Mahmood M. Shokrieh ◽  
Reza Mosalmani

In this study, three relevant friction ‎forces: constant friction force, hydrodynamic friction force and coulomb friction force are ‎considered between sheet molding compound (SMC) charge and contact surface of the mold. The power ‎law model is implemented to propose a model for prediction of hydrodynamic friction as the dominant friction of the SMC compression molding. The proposed model ‎is simple and does not need any extra experimental parameters. Finally, a model has been developed to predict the molding pressure under non-isothermal conditions. The obtained results of the model are in a very good agreement with the experimental data.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 849
Author(s):  
Sung-An Kim

A modeling of a turbo air compressor system (TACS), with a multi-level inverter for driving variable speed, combining an electrical model of an electric motor drive system (EMDS) and a mechanical model of a turbo air compressor, is essential to accurately analyze dynamics characteristics. Compared to the mechanical model, the electrical model has a short sampling time due to the high frequency switching operation of the numerous power semiconductors inside the multi-level inverter. This causes the problem of increased computational time for dynamic characteristics analysis of TACS. To solve this problem, the conventional model of the multi-level inverter has been proposed to simplify the switching operation of the power semiconductors, however it has low accuracy because it does not consider pulse width modulation (PWM) operation. Therefore, this paper proposes an improved modeling of the multi-level inverter for TACS to reduce computational time and improve the accuracy of electrical and mechanical responses. In order to verify the reduced computational time of the proposed model, the conventional model using the simplified model is compared and analyzed using an electronic circuit simulation software PSIM. Then, the improved accuracy of the proposed model is verified by comparison with the experimental results.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1617 ◽  
Author(s):  
Ruiting Tong ◽  
Zefen Quan ◽  
Yangdong Zhao ◽  
Bin Han ◽  
Geng Liu

In nanomaterials, the surface or the subsurface structures influence the friction behaviors greatly. In this work, nanoscale friction behaviors between a rigid cylinder tip and a single crystal copper substrate are studied by molecular dynamics simulation. Nanoscale textured surfaces are modeled on the surface of the substrate to represent the surface structures, and the spacings between textures are seen as defects on the surface. Nano-defects are prepared at the subsurface of the substrate. The effects of depth, orientation, width and shape of textured surfaces on the average friction forces are investigated, and the influence of subsurface defects in the substrate is also studied. Compared with the smooth surface, textured surfaces can improve friction behaviors effectively. The textured surfaces with a greater depth or smaller width lead to lower friction forces. The surface with 45° texture orientation produces the lowest average friction force among all the orientations. The influence of the shape is slight, and the v-shape shows a lower average friction force. Besides, the subsurface defects in the substrate make the sliding process unstable and the influence of subsurface defects on friction forces is sensitive to their positions.


2014 ◽  
Vol 931-932 ◽  
pp. 1457-1461 ◽  
Author(s):  
Phatsavee Ongruk ◽  
Padet Siriyasatien ◽  
Kraisak Kesorn

There are several factors that can be used to predict a dengue fever outbreak. Almost all existing research approaches, however, usually exploit the use of a basic set of core attributes to forecast an outbreak, e.g. temperature, humidity, wind speed, and rainfall. In contrast, this research identifies new attributes to improve the prediction accuracy of the outbreak. The experimental results are analyzed using a correlation analysis and demonstrate that the density of dengue virus infection rate in female mosquitoes and seasons have strong correlation with a dengue fever outbreak. In addition, the research constructs a forecast model using Poisson regression analysis. The result shows the proposed model obtains significantly low forecasting error rate when compared it against the conventional model using only temperature, humidity, wind speed, and rainfall parameters.


2018 ◽  
Vol 8 (10) ◽  
pp. 1779 ◽  
Author(s):  
Xinnan Liu ◽  
Jianjun Wang ◽  
Weijie Li

This paper presents the dynamic analytical solution of a piezoelectric stack utilized in an actuator and a generator based on the linear piezo-elasticity theory. The solutions for two different kinds of piezoelectric stacks under external load were obtained using the displacement method. The effects of load frequency and load amplitude on the dynamic characteristics of the stacks were discussed. The analytical solutions were validated using the available experimental results in special cases. The proposed model is able not only to predict the output properties of the devices, but also to reflect the inner electrical and mechanical components, which is helpful for designing piezoelectric actuators and generators in a comprehensive manner.


Author(s):  
Jin-Jang Liou ◽  
Grodrue Huang ◽  
Wensyang Hsu

Abstract A variable pressure damper (VPD) is used here to adjusted the friction force on the valve spring to investigate the relation between the friction force and the valve bouncing phenomenon. The friction force on the valve spring is found experimentally, and the corresponding friction coefficient is also determined. Dynamic valve displacements at different speeds with different friction forces are calibrated. Bouncing and floating of the valve are observed when the camshaft reaches high speed. From the measured valve displacement, the VPD is shown to have significant improvement in reducing valve bouncing distance and eliminating floating. However, experimental results indicate that the valve bouncing can not be eliminated completely when the camshaft speed is at 2985 rpm.


2019 ◽  
Vol 224 ◽  
pp. 02012
Author(s):  
Eugenе Sosenushkin ◽  
Oksana Ivanova ◽  
Elena Yanovskaya ◽  
Yuliya Vinogradova

In this paper, we study the dynamic processes in materials reinforced with fibers, that can be represented as composite rods. There has been developed a mathematical model of wave propagation under the impact of a shock pulse in semi-infinite composite rods. It is believed that the considered composite rod consists of two layers formed by simpler rods of different isotropic materials with different mechanical properties. The cross sections of such rods are considered to be constant and identical. When such composite materials are impacted by dynamic loads, a significant part of the energy is dissipated due to the presence of friction forces between the contact surfaces of the rods. In this regard, we study the propagation of waves in an elastic fiber-rod, the layers of which interact according to Coulomb law of dry friction. The case of instantaneous excitation of rods by step pulses is investigated. The blow is applied to a rod made of a harder material. In the absence of slippage, the friction force gets a value not exceeding the absolute value of the limit. In the absence of slippage, the friction force takes a value not exceeding the absolute value of the limit. Let us consider the value of the friction force constant. Normal stresses and velocities satisfy the equations of motion and Hooke’s law. The problem statement results in the solution of inhomogeneous wave equations by the method of characteristics in different domains, which are the lines of discontinuities of the solution. Solutions are found in all constructed domains. On the basis of the analysis of the obtained solution, qualitative conclusions are made and curves are constructed according to the obtained ratios. From the found analytical solution of the problem it is possible to obtain ratios for stresses and strain rates in composite rods and composite materials.


2019 ◽  
Vol 126 ◽  
pp. 00038
Author(s):  
Vladimir Konovalov ◽  
Sergey Konovalov ◽  
Victoria Igumnova

The article shows importance of use of dump plowing for formation and maintenance of soil structure and pest control and diseases of cultivated plants. A significant drawback of plowing process is indicated, which is its high energy intensity. To reduce energy consumption, it is proposed to use rotating field boards, which allow replacing sliding friction forces with rolling friction forces. The article presents a description of design of plow’s body with rotating field board and notes that without a preliminary analytical study and justification of initial parameters, their use may not be effective. Analytical relations connecting value of radius of rotating field of board, rate of collapse of soil, allowable value of indentation of field board into soil and specific force of cutting resistance of soil that ability to use it for baseline technical parameters. To analyze obtained dependence, the article presents its graphical solution. The authors obtained an expression for determining the value of arm’s force of reference reaction from soil to balance a plow’s body, in addition, this indicator can be used to adjust a body when working on soils with different physical and mechanical parameters and at different depths.


2019 ◽  
Vol 89 (6) ◽  
pp. 883-888
Author(s):  
Sérgio Elias Neves Cury ◽  
Silvio Augusto Bellini-Pereira ◽  
Aron Aliaga-Del Castillo ◽  
Sérgio Schneider ◽  
Arnaldo Pinzan ◽  
...  

ABSTRACT Objective: To evaluate the effect of two different prophylaxis protocols on the friction force in sliding mechanics during in vivo leveling and alignment. Materials and Methods: The sample comprised 48 hemi-arches divided into three groups according to the prophylactic protocol adopted. Group 1 consisted of patients undergoing prophylaxis with sodium bicarbonate, group 2 consisted of patients submitted to prophylaxis with glycine, and group 3 consisted of patients without prophylaxis, as a control. All patients received hygiene instructions and, with the exception of group 3, prophylaxis was performed monthly. After 10 months, the brackets were removed from the oral cavity and submitted to friction force tests and qualitative analysis by scanning electron microscopy. Analysis of variance followed by Tukey tests was performed for intergroup comparison regarding the friction force. Results: The experimental groups presented significantly smaller friction forces than the group without prophylaxis. Accordingly, qualitative analysis showed greater debris accumulation in the group without the prophylactic procedures. Conclusions: Prophylactic blasting with sodium bicarbonate or glycine can significantly prevent an increase of the friction force during sliding mechanics.


SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 365-373 ◽  
Author(s):  
Silviu Livescu ◽  
Steven Craig ◽  
Bill Aitken

Summary The lateral reach and residual bottomhole-assembly (BHA) loads in extended-reach wells strongly depend on the coiled-tubing (CT) mechanical friction. Detailed CT-friction modeling becomes crucial in the prejob planning stage to ensure successful job predictability. However, current numerical simulators consider constant coefficients of friction (CoFs) that are determined from similar operations without taking into account the effects of the operational and downhole parameters on the CoF for a specific operation. This study outlines the modeling of CT-friction force, CoF, and axial BHA loads depending on the operational and downhole parameters when a fluid-hammer tool is used. Recent theoretical, laboratory, and field data have established how CoF depends on the downhole parameters (Livescu and Wang 2014; Livescu and Watkins 2014; Livescu et al. 2014a, b; Livescu and Craig 2015). Previously, these effects were not considered in the CT numerical models, leading to significant CoF differences among available commercial simulators. For instance, the default CoFs in the current prejob simulations for cased holes, when no lubricant or friction-reducing tools such as fluid-hammer tools and tractors are used, vary between 0.24 and 0.30 or even higher. This makes it extremely difficult to consistently evaluate and compare the friction-reduction effects of lubricants, fluid-hammer tools, and tractors in extended-reach wells, especially when the field operator may be consulting with several service companies that use different commercial force-modeling software. This study presents the CT-force matching and fundamental physics on the basis of modeled fluid forces, including radial forces, drag forces, and, most importantly, pressure forces on the CT-friction forces caused by fluid-hammer tools. Extending the method of characteristics, regularly used for studying pressure pulses in straight pipes, the perturbations method also accounts for the helical shape of the CT. The new CT fluid-hammer model is validated against laboratory data. This rigorous method for calculating the axial BHA load and reduced CT-friction force caused by radial vibrations can be easily implemented in currently available tubing-force analysis (TFA) software for CT operations. This novel approach, which uses detailed CT mechanical-friction modeling to take into account parameters such as temperature, internal pressure, pumping rate, and others, improves predictions for CT reach in lateral wells. These findings broaden the current industry understanding of the CT mechanical friction modeling in extended-reach wells, and show benefits for the industry when considering variable friction modeling in commercial CT simulators.


Sign in / Sign up

Export Citation Format

Share Document