Titanium Drilling Risers—Application and Qualification

1999 ◽  
Vol 122 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Mamdouh M. Salama ◽  
Jagannathan Murali ◽  
Mike W. Joosten

Titanium alloy Ti-6AI-4V ELI is selected for a high-pressure drilling riser application due to its high specific strength, corrosion resistance, and favorable elastic properties. The qualification of this titanium alloy requires assessing its resistance to hydrogen embrittlement and stress corrosion cracking due to seawater with/without cathodic protection, evaluating its wear resistance against a rotating steel drill string, and studying the influence of service-induced defects on fatigue and crack growth behavior when subjected to the operating environment. The paper presents an overview of the design requirements for a titanium drilling riser, and the material properties of the Ti-6AI-4V ELI alloy proposed for this application. The paper also highlights recent efforts to merge titanium and composite technologies to develop cost-effective drilling risers. [S0892-7219(00)01001-3]

2021 ◽  
Vol 261 ◽  
pp. 02021
Author(s):  
Xiaoyong Yang ◽  
Shichun Chen ◽  
Qiang Feng ◽  
Wenhua Zhang ◽  
Yue Wang

With the increasing intensity of oil and gas field exploration and development, oil and gas wells are also drilling into deeper and more complex formations. Conventional steel drilling tools can no longer meet the requirements of ultra-deep, high-temperature and high-pressure wells. The paper first analyzes the advantages of titanium alloy drill pipe based on basic performance of titanium alloy drill pipe. The experimental results show that the basic properties of titanium alloy drill pipes meet the operating standards of the petroleum industry. Then the buckling performance of titanium alloy drill pipe and steel drill pipe is compared, the calculation results show that the buckling performance of titanium alloy drill tools is slightly lower than that of steel drill tools. Secondly, the maximum allowable buildup rate of titanium alloy drill pipe and steel drill tool is studied. The research shows that under the same condition of the drill pipe outer diameter, titanium alloy drill pipe can be used for a smaller curvature radius and greater buildup rate. This advantage of titanium alloy drill pipe makes it more suitable for short radius and ultra-short radius wells. Finally, taking a shale gas horizontal well as an example, with the goal of reducing drill string friction and ensuring drill string stability, a comparative study on the application of titanium alloy drill pipe and steel drill pipe is carried out. The results show that titanium alloy drill pipe has a wider application in the field, and is suitable for operations under various complex working conditions.


Author(s):  
Anil K. Srivastava ◽  
Jon Iverson

Titanium and its alloys have seen increased utilization in military and aerospace applications due to combination of high specific strength, toughness, corrosion resistance, elevated-temperature performance and compatibility with polymer composite materials. Titanium alloys are difficult to machine due to their inherent low thermal conductivity and higher chemical reactivity with other materials at elevated temperatures. In general, temperature related machining difficulties are encountered at production speeds in the range of 60 m/min and high-speed machining of these alloys has created considerable interest to researchers, tool manufacturers and end users. This paper provides recent results obtained during turning operation with the aim of improving machinability of titanium alloys. Several tests have been conducted using (i) micro-edge prep geometry of the inserts, (ii) ultra-hard PVD coated, and (iii) nano-layered coated inserts and the effects of speeds and feeds during turning of Ti-6Al-4V titanium alloy are discussed. The initial tests have been conducted under orthogonal (2-D) cutting conditions with no coolant application. Based on these results, several oblique cutting (3-D) tests have been designed and conducted to study the effect of various types of ultra-hard and nano-layered coatings at higher cutting speeds under flooded coolant conditions. The effects of speed and feed on cutting force and tool wear are presented in this paper.


2016 ◽  
Vol 849 ◽  
pp. 317-320
Author(s):  
Meng Qi Yan ◽  
Kai Li ◽  
Yu Hui Wang ◽  
Wang Feng Zhang

TC4 titanium alloys have been extensively used in the aerospace engineering due to the high specific strength, high temperature resistance and good corrosion resistance. However, unsuitable forging methods will cause unqualified mechanical properties in the height direction of forgings. The microstructure and microtexture of the forgings after two forging processes with different upsetting and drawing times were investigated by optical microscopy (OM) and electron back scattering diffraction (EBSD) technique. The results showed that bimodal microstructure and weak basal {0002} texture can be obtained after forging. With the increase of upsetting and drawing times, lamellar α were curved and coarsen, basal {0002} texture were enhanced, and the special 60°<11-20> preferred orientation between lamellar α phase due to Burgers relationship was avoided. The modification of microtexture and grain boundary distributions can improve the strength of TC4 titanium alloy forging in the height direction.


1976 ◽  
Vol 21 (2) ◽  
pp. 12-19 ◽  
Author(s):  
Peter Arcidiacono ◽  
Robert Zincone

A description of the design philosophy leading to the development of a high performance rotor blade for the Army UTTAS helicopter is presented. The Army mission requirements of 550 fpm rate‐of‐climb at 4000 ft, 95° conditions and a 1.75 g maneuver at 150 knots translate into Figure of Merit and aeroelastic achievements beyond those of existing rotors. The roles played by high blade twist, advanced airfoils, and swept tips in providing a rotor system having an unprecedented Figure of Merit of 0.75 is discussed. The technology needed to successfully use a high twist blade and yet achieve forward flight and maneuvering requirements is embodied in the titanium spar, composite cover blade. It is shown that titanium with a bending strain allowable 2 times that of aluminum and a torsional stiffness 2.5 times that of fiberglass best meets the weight, stiffness and life design requirements. The composite cover provides the durability needed for the Army mission while the high specific strength of titanium exceeds the standards of safety set by Sikorsky aluminum blades.


Author(s):  
J. E. O'Neal ◽  
K. K. Sankaran

Al-Li-Cu alloys combine high specific strength and high specific modulus and are potential candidates for aircraft structural applications. As part of an effort to optimize Al-Li-Cu alloys for specific applications, precipitation in these alloys was studied for a range of compositions, and the mechanical behavior was correlated with the microstructures.Alloys with nominal compositions of Al-4Cu-2Li-0.2Zr, Al-2.5Cu-2.5Li-0.2Zr, and Al-l.5Cu-2.5Li-0.5Mn were argon-atomized into powder at solidification rates ≈ 103°C/s. Powders were consolidated into bar stock by vacuum pressing and extruding at 400°C. Alloy specimens were solution annealed at 530°C and aged at temperatures up to 250°C, and the resultant precipitation was studied by transmission electron microscopy (TEM).The low-temperature (≲100°C) precipitation behavior of the Al-4Cu-2Li-0.2Zr alloy is a combination of the separate precipitation behaviors of Al-Cu and Al-Li alloys. The age-hardening behavior at these temperatures is characteristic of Guinier-Preston (GP) zone formation, with additional strengthening resulting from the coherent precipitation of δ’ (Al3Li, Ll2 structure), the presence of which is revealed by the selected-area diffraction pattern (SADP) shown in Figure la.


1999 ◽  
Vol 5 (S2) ◽  
pp. 836-837
Author(s):  
R. Mitra ◽  
W.A. Chiou ◽  
A.Madan ◽  
R. Hoffman ◽  
J.R. Weertman

There has been a significant interest in the development of dispersion-hardened aluminum for many years for high specific strength and modulus. Such materials are usually processed by powder or ingot metallurgy routes. In this study, Al3 Ti dispersion hardened Al was obtained by annealing Al-Ti multilayers. Al-Ti multilayered films have been characterized in the past by observing the structure of the layers, as well as tensile properties and hardness. This paper reports the structure of Al-Ti multilayers and the evolution of matrix and dispersoid microstructure on annealing.The Al-Ti multilayered structures were prepared by magnetron sputtering using Al and Ti as targets and either Si (100) or NaCl as substrates. The bi-layer thickness was maintained around 16 nm with Ti constituting 12% of the total. The substrate was alternately moved below the Al and Ti targets for the purpose of deposition. The as-deposited film on the substrate and NaCl salts were annealed at 400°C for periods between 1 and 24 h in a vacuum (10−5 torr) furnace.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


2009 ◽  
Vol 610-613 ◽  
pp. 1128-1131
Author(s):  
Xiu Yan Li ◽  
Ying Zhang ◽  
Bin Tang ◽  
Zhong Xu

Ti6Al4V alloy is promising biology material with outstanding properties of low density, high specific strength, and exceptional corrosion resistance. However, one of its disadvantages is the poor tribological property. In this paper Mo-N hard surface modification layers were formed on Ti6Al4V at 900°C substrate temperature by plasma reactive sputtering. The flux ratio N2/Ar is an important parameter and its influence on the composition, structure and hardness of the Mo-N layers is studied. The Mo-N layers are duplex layers, composed of diffusing layer and surface coating. The component of Mo and N elements in the diffusing layer changes gradually which can enhance the load-bearing capacity to the coating and ensure the durability of the coating. With the increase of the flux ratio N2/Ar, the content of N element in the Mo-N layers increases. The Mo-N layers were polycrystalline γ- Mo2N with (200) plane oriented parallel to the substrate surface. The surface hardness of the formed layers is in the range HK1330-1430. The hardness of the Mo-N layers increases with the increase of the flux ratio N2/Ar and the reason is that the content of N element in the Mo-N layers increases.


Sign in / Sign up

Export Citation Format

Share Document