Studies of Carbon Nanotube Based Composites for Aerospace Applications

Author(s):  
S. Bellucci ◽  
F. Micciulla ◽  
C. Balasubramanian ◽  
A. Grilli ◽  
G. Rinaldi

Carbon nanotubes are being widely studied for various applications ranging from medical to electronics and also optical devices. They are also being studied for the suitability and applications in aerospace and aeronautical field. A useful application in aerospace that we are studying is the improvement of electrical properties of composites made from carbon nanotubes and epoxy resin. Towards this end, we have studied the resistivity of composite materials with varying percentages of carbon nanotubes (CNT) added to the epoxy resin. Carbon nanotubes were synthesized by thermal arc plasma process after optimization of the synthesis parameters. These samples were then analysed by electron microscopes like scanning electron and transmission electron microscopes (SEM and TEM), in order to establish the morphology of the nanostructures. Composites of epoxy resin with curing agent as well as a mixture of graphite and carbon nanotubes were prepared with varying proportions of the mixture. The electrical resistivity of the material was studied under varying pressure and voltage conditions. The result of these studies yields interesting features which are useful in choosing the ideal composition and ratio of the composite material for use in shielding of electrical circuits of space vehicles from radiations of the outer space.

RSC Advances ◽  
2019 ◽  
Vol 9 (23) ◽  
pp. 12864-12876 ◽  
Author(s):  
Lu Li ◽  
Xia Liao ◽  
Xingyue Sheng ◽  
Zengheng Hao ◽  
Leilei He ◽  
...  

Carboxylic carbon nanotubes were modified by a series of hyperbranched polyesters (HBP), and epoxy resin/carbon nanotubes composites were prepared. The effect of structure regulation of HBP on toughening properties of composites was discussed.


Author(s):  
S. Kamimura ◽  
T. Katsuta ◽  
Y. Minamikawa

Higher accelerating voltage has been required of transmission electron microscopes in various research and application fields. In this report, a new electron gun developed by Hitachi, Ltd. will be described. The aim of this development was to design a compact 200 kV electron microscope offering simplicity and convenience of operation and maintenance and the highest possible performance.Description will be made first on the packaged electron gun. Fig. 1 shows the sectional view of the gun. The accelerating tube is built in the gun housing so as to be free from exterior impact. Unlike the conventional gun housing, this one is made of epoxy resin instead of metal. The inside diameter of the housing is reduced to 170 mm due to the excellent insulation property of epoxy resin. A bushing for high voltage cable is mounted on the housing, making its withstand voltage high in spite of the short contour of the housing (140 mm).


2021 ◽  
Vol 887 ◽  
pp. 138-143
Author(s):  
D.O. Zavrazhin ◽  
T.A. Lutovinova ◽  
Ch.V. Zavrazhina

The purpose of the work is to develop new polymer composite nanomodified materials for the restoration of hull parts of agricultural machinery.As a result of research, a comparative analysis of the properties of composites based on epoxy resin ED-20 with the addition of 0.1-1.5 mass parts of carbon nanotubes “Taunit-M” obtained by free casting and direct pressing was carried out. The effectiveness of the developed compositions is proved when using them as binders in the production of fiber-reinforced composites.It was found that the introduction of 0.5 to 1 mass. parts CNT "Taunit" allows you to increase the strength characteristics of the resin ED-20 1.5-4 times with uniaxial tension, 2-2.5 times with three-point bending and reduce weight wear by 5-10 times.


2010 ◽  
Vol 93-94 ◽  
pp. 497-500 ◽  
Author(s):  
Haruthai Longkullabutra ◽  
Wandee Thamjaree ◽  
Wim Nhuapeng

An experimental was investigated the condition of reinforcement of epoxy resin and hemp fiber/epoxy resin composites with carbon nanotubes (CNTs). The CNTs adding nanopowder were vibrated via the vibration milling technique for 6-48 h. Different volume percentages of CNTs were dispersed for hemp/epoxy resin composites. To compare properties of composites sample, CNTs were also added into epoxy resin for reference. Tensile strength of both specimens was tested. The significantly adding of CNTs and its dispersion in polymer matrix were investigated by scanning electron microscope (SEM). The results indicate that adding the milled CNTs can improve tensile properties of composites.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Jiaoxia Zhang ◽  
Yaping Zheng ◽  
Haijun Zhou ◽  
Jing Zhang ◽  
Jun Zou

Hydroxylated multiwall carbon nanotubes (MWNTs)/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.


Author(s):  
Toshio Sakai

It has been routin to cut semithin sections to look for desired areas before cutting ultrathin sections for electron microscope studies. A new method made it possible to observe larger semithin sections of epoxy resin-embedded tissue with both light microscope and two kinds of electron microscopes,: Transmission Electron Microscope and Scanning Transmission Electron Microscope.Samples obtained from kidneys of rats and mice were sliced to 0. 5.mm to 1 mm thickness. They were fixed for 4 hours in Sorensen phosphate buffer of pH 7.4, containing 2 % glutaraldehyde and 1.5 % paraformaldehyde, rinsed in plain buffer for 12 hours (overnight) and postfixed in 1 % osmium tetroxide buffered with phosphate for 90 minutes. The tissu blocks were then embedded in epoxy resin in a ratio of 6:4 or 5:5 by weight, based on the method of Luft.


2011 ◽  
Vol 189-193 ◽  
pp. 1340-1343 ◽  
Author(s):  
Yu Zhang ◽  
Chuan Guo Ma

Aligned carbon nanotubes(CNTs)/epoxy resin(EP) composites were prepared under a low magnetic field (B<500mT) induction. The effect of different magnetic fields on the electrical and dielectrical properties of composites was investigated. The results show that the CNTs are aligned with rod-like aggregations instead of single CNTs when the magnetic field direction is vertical to the casting direction of samples, then electric conductivity, permittivity, dielectric loss of the composite are improved. And a larger magnetic field intensity and a bigger mould capacity can help the effect of magnetic field induction. However the CNTs are seriously aggregated and the electrical properties of composites change worse when the magnetic field direction is parallel to the casting direction of samples.


2011 ◽  
Vol 221 ◽  
pp. 1-7 ◽  
Author(s):  
Ying An ◽  
Xue Tao He ◽  
Wei Min Yang ◽  
Yu Mei Ding

In order to improve the dispersion homogeneity and stabilization of multi-walled carbon nanotubes (MWNT) in epoxy resin, the effect of different surfactants such as hexadecyl trimethyl ammonium bromide (HTAB), sodium dodecyl sulfate (SDS), oleic acid, Triton X-100 and BYK-9077 on the dispersion of MWNT were investigated. Suspensions of MWNTs/epoxy resin with various surfactants were prepared by ultrasonic agitation. Dispersion homogeneity of MWNT in epoxy resin was evaluated by transmission electron microscopy (TEM), and dispersion stabilization was evaluated by stationary observation. The results show that dispersion properties were not improved by HTAB, while they were improved incoordinately by SDS, oleic acid, Triton X-100 and BYK-9077. Suspensions of MWNTs/epoxy resin with HTAB, SDS, oleic acid and Triton X-100 were all delaminated quickly, it means, dispersion stabilization were not improved by these surfactants. BYK-9077 was the only surfactant which enhanced the dispersion homogeneity and stabilization of MWNTs/epoxy resin significantly. Based on this research, various weight ratios of surfactant BYK-9077 to MWNT were studied. The experimental results show that the dispersion system could reach a balance state when the ratio of surfactant BYK-9077 to MWN was 2.


NANO ◽  
2015 ◽  
Vol 10 (01) ◽  
pp. 1550012 ◽  
Author(s):  
Tingting Li ◽  
Hongxia Yan ◽  
Tianye Liu ◽  
Chao Liu ◽  
Zhengyan Chen

In order to improve the dispersibility of carbon nanotubes (CNTs) in the resin matrix, CNTs grafted with hyperbranched triazine compound (HPTC–CNTs) was produced by four generations condensation reaction using cyanuric chloride and hexamethylenediamine. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), UV-Vis spectroscopy (UV-Vis) and transmission electron microscopes (TEM) were used to characterize the obtained HPTC–CNTs. The FTIR, XPS, UV-Vis and TEM analysis showed that CNTs had been successfully grafted with HPTC. The TGA showed that the content of HPTC on the surface of CNTs was about 58 wt.%. And the HPTC–CNTs had good dispersion both in water and acetone.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document