A Pilot-Control Device Model for Helicopter Sensitivity to Collective Bounce

Author(s):  
Stefano Zanlucchi ◽  
Pierangelo Masarati ◽  
Giuseppe Quaranta

This work presents a parametric dynamic model of a helicopter collective control inceptor that includes the biodynamics of the pilot. The biodynamic feedthrough and neuromuscular admittance of a helicopter pilot are characterized using a detailed multibody analysis of the pilot’s left arm holding the inceptor as a ‘virtual experiment’ to produce the results required to identify the parameters of the coupled system. The goal is to develop an analytical model of the dynamics of the coupled pilot-device system and gain insight into the effect of several design parameters on the characteristics of the coupled system. The effect of device inertia, damping, stiffness and friction on the stability margins of the coupled system with respect to the collective bounce instability phenomenon are analyzed and discussed. The analytical model is verified using it in place of the detailed multibody model of the pilot’s arm in the fully detailed multibody simulation of the coupled system. It is then used in linearized analysis of the complete system in support of the vehicle design.

2000 ◽  
Vol 34 (2) ◽  
pp. 22-25
Author(s):  
Manikoth Aravindakshan

This paper describes the design of a simple, inexpensive but effective ‘detach weight’ device that can aid in the stability as well as the recovery of underwater vehicles and unpropelled consoles. If the vehicle attempts to cross the maximum specified sea depth due to water seepage, poor stability, failure of normal recovery schedule, or inherent negative buoyancy as that of a console, then the proposed mechanism gets activated to achieve terminal buoyancy. Non-reliance on electrical, pneumatic or hydraulic power and sensors distinguish the device from conventional ballasting methods. Insitu assembly and adjustments of activation depth and weight can add flexibility to the vehicle design parameters such as overall CG, weight, trim, list etc.


2021 ◽  
Author(s):  
A. G. Agúndez ◽  
D. García-Vallejo ◽  
E. Freire ◽  
A. M. Mikkola

Abstract In this paper, the stability of a waveboard, the skateboard consisting in two articulated platforms, coupled by a torsion bar and supported of two caster wheels, is analysed. The waveboard presents an interesting propelling mechanism, since the rider can achieve a forward motion by means of an oscillatory lateral motion of the platforms. The system is described using a multibody model with holonomic and nonholonomic constraints. To perform the stability analysis, the nonlinear equations of motion are linearized with respect to the forward upright motion with constant speed. The linearization is carried out resorting to a novel numerical linearization procedure, recently validated with a well-acknowledged bicycle benchmark, which allows the maximum possible reduction of the linearized equations of motion of multibody systems with holonomic and nonholonomic constraints. The approach allows the expression of the Jacobian matrix in terms of the main design parameters of the multibody system under study. This paper illustrates the use of this linearization approach with a complex multibody system as the waveboard. Furthermore, a sensitivity analysis of the eigenvalues considering different scenarios is performed, and the influence of the forward speed, the casters’ inclination angle and the tori aspect ratios of the toroidal wheels on the stability of the system is analysed.


Author(s):  
Rituraj Rituraj ◽  
Rudolf Scheidl

Spools in hydraulic valves are prone to sticking caused by unbalanced lateral forces due to geometric imperfections of their sealing lands. This sticking problem can be related to the stability of the coaxial spool position. Numerical methods are commonly used to study this behaviour. However, since several parameters can influence the spool stability, parametric studies become significantly computationally expensive and graphical analysis of the numerical results in multidimensional parameter space becomes difficult. To overcome this difficulty, in this work, an analytical approach for studying the stability characteristics of the spool valve is presented. A Rayleigh-Ritz method is used for solving the Reynolds equation in an approximate way in order to determine an analytical expression for the lateral force on the sealing lands. This analytical expression allows stability analysis of the spool via analytical means which finally results in the expression of critical axial velocity which demarcates the regions of stable behaviour. Simplicity of the expression allows an immediate insight into the role of design parameters in the stability of the spool. To verify the analytical model, a numerical model for spool dynamics is developed in this work and the numerical results are found to match the analytical model in terms of the stability behaviour of the spool.


Author(s):  
Alfonso García-Agúndez Blanco ◽  
Daniel García Vallejo ◽  
Emilio Freire ◽  
Aki Mikkola

Abstract In this paper, the stability of a waveboard, a human propelled two-wheeled vehicle consisting in two rotatable platforms, joined by a torsion bar and supported on two caster wheels, is analysed. A multibody model with holonomic and nonholonomic constraints is used to describe the system. The nonlinear equations of motion, which constitute a Differential-Algebraic system of equations (DAE system), are linearized along the steady forward motion resorting to a recently validated linearization procedure, which allows the maximum possible reduction of the linearized equations of motion of constrained multibody systems. The approach enables the generation of the Jacobian matrix in terms of the geometric and dynamic parameters of the multibody system, and the eigenvalues of the system are parameterized in terms of the design parameters. The resulting minimum set of linear equations leads to the elimination of spurious null eigenvalues, while retaining all the stability information in spite of the reduction of the Jacobian matrix. The linear stability results of the waveboard obtained in previous work are validated with this approach. The procedure shows an excellent computational efficiency with the waveboard, its utilization being highly advisable to linearize the equations of motion of complex constrained multibody systems.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Gil Jun Lee ◽  
Jay Kim

Squeak is an unwanted, annoying noise generated by self-excited, friction-induced vibration. A unique squeak test apparatus that can generate squeak noises consistently was developed by modifying and employing a sprag-slip mechanism. Such an apparatus enables building database that accurately ranks squeak propensity of material pairs and will be highly useful for noise, vibration, and harshness (NVH) engineers and vehicle interior designers. An analytical model of the apparatus was developed to identify instability conditions that induce unstable, large-amplitude vibration, therefore squeak noises. A finite element model was established and studied in this work to refine the design of the apparatus and better understand underlying phenomena of the squeak generation. Complex eigenvalue analysis (CEA) was used to study the instability of the system and results show that the instability occurs by the coalescence of two modes, which makes the effective damping of one of the coalesced modes negative. The instability condition from the CEA shows good agreement with the results obtained from the analytical model. Furthermore, dynamic transient analysis (DTA) was performed to investigate the stability of the system and confirm the instability conditions identified from the CEA. The effects of main design parameters on the stability were investigated by DTA. The results obtained from the actual tests show that the test apparatus consistently generates unstable vibration of a very large amplitude, indicating generation of squeak noises.


Robotica ◽  
2021 ◽  
pp. 1-14
Author(s):  
Hongkai Li ◽  
Xianfei Sun ◽  
Zishuo Chen ◽  
Lei Zhang ◽  
Hongchao Wang ◽  
...  

Abstract Inspired by gecko’s adhesive feet, a wheeled wall climbing robot is designed in this paper with the synchronized gears and belt system acting as the wheels by considering both motion efficiency and adhesive capability. Adhesion of wheels is obtained by the bio-inspired adhesive material wrapping on the outer surface of wheels. A ducted fan mounted on the back of the robot supplies thrust force for the adhesive material to generate normal and shear adhesion force whilemoving on vertical surfaces. Experimental verification of robot climbing on vertical flat surface was carried out. The stability and the effect of structure design parameters were analyzed.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Javaid Ahmad ◽  
Shaohong Cheng ◽  
Faouzi Ghrib

Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.


1999 ◽  
Vol 121 (3) ◽  
pp. 499-509 ◽  
Author(s):  
S. A. Khalid ◽  
A. S. Khalsa ◽  
I. A. Waitz ◽  
C. S. Tan ◽  
E. M. Greitzer ◽  
...  

This paper presents a new methodology for quantifying compressor endwall blockage and an approach, using this quantification, for defining the links between design parameters, flow conditions, and the growth of blockage due to tip clearance flow. Numerical simulations, measurements in a low-speed compressor, and measurements in a wind tunnel designed to simulate a compressor clearance flow are used to assess the approach. The analysis thus developed allows predictions of endwall blockage associated with variations in tip clearance, blade stagger angle, inlet boundary layer thickness, loading level, loading profile, solidity, and clearance jet total pressure. The estimates provided by this simplified method capture the trends in blockage with changes in design parameters to within 10 percent. More importantly, however, the method provides physical insight into, and thus guidance for control of, the flow features and phenomena responsible for compressor endwall blockage generation.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ebenezer Bonyah ◽  
Isaac Dontwi ◽  
Farai Nyabadza

The management of the Buruli ulcer (BU) in Africa is often accompanied by limited resources, delays in treatment, and macilent capacity in medical facilities. These challenges limit the number of infected individuals that access medical facilities. While most of the mathematical models with treatment assume a treatment function proportional to the number of infected individuals, in settings with such limitations, this assumption may not be valid. To capture these challenges, a mathematical model of the Buruli ulcer with a saturated treatment function is developed and studied. The model is a coupled system of two submodels for the human population and the environment. We examine the stability of the submodels and carry out numerical simulations. The model analysis is carried out in terms of the reproduction number of the submodel of environmental dynamics. The dynamics of the human population submodel, are found to occur at the steady states of the submodel of environmental dynamics. Sensitivity analysis is carried out on the model parameters and it is observed that the BU epidemic is driven by the dynamics of the environment. The model suggests that more effort should be focused on environmental management. The paper is concluded by discussing the public implications of the results.


Author(s):  
X. Lachenal ◽  
P. M. Weaver ◽  
S. Daynes

Conventional shape-changing engineering structures use discrete parts articulated around a number of linkages. Each part carries the loads, and the articulations provide the degrees of freedom of the system, leading to heavy and complex mechanisms. Consequently, there has been increased interest in morphing structures over the past decade owing to their potential to combine the conflicting requirements of strength, flexibility and low mass. This article presents a novel type of morphing structure capable of large deformations, simply consisting of two pre-stressed flanges joined to introduce two stable configurations. The bistability is analysed through a simple analytical model, predicting the positions of the stable and unstable states for different design parameters and material properties. Good correlation is found between experimental results, finite-element modelling and predictions from the analytical model for one particular example. A wide range of design parameters and material properties is also analytically investigated, yielding a remarkable structure with zero stiffness along the twisting axis.


Sign in / Sign up

Export Citation Format

Share Document