Carbon Particle Generation and Lab-Scale Small Particle Heat Exchange Receiver Experimentation and Modeling

Author(s):  
Lee Frederickson ◽  
Mario Leoni ◽  
Fletcher Miller

Central receivers being installed in recent commercial CSP plants are liquid-cooled and power a steam turbine in a Rankine cycle. San Diego State University’s (SDSU) Combustion and Solar Energy Laboratory has built and is testing a lab-scale Small Particle Heat Exchange Receiver (SPHER). The SPHER is an air-cooled central receiver that is designed to power a gas turbine in a Brayton cycle. The SPHER uses carbon nanoparticles suspended in air as an absorption medium. The carbon nanoparticles should oxidize by the outlet of the SPHER, which is currently designed to operate at 5 bar absolute with an exit gas temperature above 1000°C. Carbon particles are generated from hydrocarbon pyrolysis in the carbon particle generator (CPG). The particles are mixed at the outlet of the CPG with dilution air and the mixture is sent to the SPHER. As the gas-particle mixture flows through the SPHER, radiation entering the SPHER from the solar simulator is absorbed by the carbon particles, which transfer heat to the gas suspension and eventually oxidize, resulting in a clear gas stream at the outlet. Particle mass loading is measured using a laser opacity measurement combined with a Mie calculation, while particle size distribution is determined by scanning electron microscopy and a diesel particulate scatterometer prior to entering the SPHER. In predicting the performance of the system, computer models have been set up in CHEMKIN-PRO for the CPG and in ANSYS Fluent for the SPHER, which is coupled with VeGaS ray trace code for the solar simulator. Initial experimentation has resulted in temperatures above 850°C with around a 50K temperature difference when particles are present in the air flow. The CPG computer model has been used to estimate performance trends while the SPHER computer model has been run for conditions to match those expected from future experimentation.

Author(s):  
Lee Frederickson ◽  
Kyle Kitzmiller ◽  
Fletcher Miller

High temperature central receivers are on the forefront of concentrating solar power research. Current receivers use liquid cooling and power steam cycles, but new receivers are being designed to power gas turbine engines within a power cycle while operating at a high efficiency. To address this, a lab-scale Small Particle Heat Exchange Receiver (SPHER), a high temperature solar receiver, was built and is currently undergoing testing at the San Diego State University’s (SDSU) Combustion and Solar Energy Laboratory. The final goal is to design, build, and test a full-scale SPHER that can absorb 5 MWth and eventually be used within a Brayton cycle. The SPHER utilizes air mixed with carbon particles generated in the Carbon Particle Generator (CPG) as an absorption medium for the concentrated solar flux. Natural gas and nitrogen are sent to the CPG where the natural gas undergoes pyrolysis to carbon particles and nitrogen is used as the carrier gas. The resulting particle-gas mixture flows out of the vessel and is met with dilution air, which flows to the SPHER. The lab-scale SPHER is an insulated steel vessel with a spherical cap quartz window. For simulating on-sun testing, a solar flux is produced by a solar simulator, which consists of a 15kWe xenon arc lamp, situated vertically, and an ellipsoidal reflector to obtain a focus at the plane of the receiver window. The solar simulator has been shown to produce an output of about 3.25 kWth within a 10 cm diameter aperture. Inside of the SPHER, the carbon particles in the inlet particle-gas mixture absorb radiation from the solar flux. The carbon particles heat the air and eventually oxidize to carbon dioxide, resulting in a clear outlet fluid stream. Since testing was initiated, there have been several changes to the system as we have learned more about the operation. A new extinction tube was designed and built to obtain more accurate mass loading data. Piping and insulation for the CPG and SPHER were improved based on observations between testing periods. The window flange and seal have been redesigned to incorporate window film cooling. These improvements have been made in order to achieve the lab scale SPHER design objective gas outlet flow of 650°C at 5 bar.


Author(s):  
Mario Leoni ◽  
Lee Frederickson ◽  
Fletcher Miller

A new experimental set-up has been introduced at San Diego State University’s Combustion and Solar Energy Lab to study the thermal oxidation characteristics of in-situ generated carbon particles in air at high pressure. The study is part of a project developing a Small Particle Heat Exchange Receiver (SPHER) utilizing concentrated solar power to run a Brayton cycle. The oxidation data obtained will further be used in different existing and planned computer models in order to accurately predict reactor temperatures and flow behavior in the SPHER. The carbon black particles were produced by thermal decomposition of natural gas at 1250 °C and a pressure of 5.65 bar (82 psi). Particles were analyzed using a Diesel Particle Scatterometer (DPS) and scanning electron microscopy (SEM) and found to have a 310 nm average diameter. The size distribution and the complex index of refraction were measured and the data were used to calculate the specific extinction cross section γ of the spherical particles. The oxidation rate was determined using 2 extinction tubes and a tube furnace and the values were compared to literature. The activation energy of the carbon particles was determined to be 295.02 kJ/mole which is higher than in comparable studies. However, the oxidation of carbon particles bigger than 100 nm is hardly studied and almost no previous data is available at these conditions.


Author(s):  
Hamed Abedini Najafabadi ◽  
Nesrin Ozalp

Abstract Carbon particles can be used as catalyst in solar reactors where they serve as radiant absorbent and nucleation sites for the heterogeneous decomposition reaction. Unlike commonly used metal catalysts, carbon catalyst does not have durability problem and high cost. However, in order to achieve sustainable catalytic decomposition of feedstock over carbon catalysts at elevated temperatures, the surface area of the carbon particles must be maintained. A subsequent treatment of deactivated carbon samples with CO2 at about 1000°C would increase the surface and would recover the original activity as catalyst. In solar reactor, carbon particles are directly exposed to the high-flux irradiation providing efficient radiation heat transfer directly to the reaction site. Therefore, one of the key parameters to achieve higher conversion efficiencies in solar reactor is the presence and transport of carbon particles. This paper will present impact of carbon use in enhancing the heat transfer inside a solar reactor radiated by a solar simulator. Flux entering the receiver is determined using Monte Carlo ray tracing (MCRT) method which is coupled with energy balance equations to derive numerical model describing dynamic temperature variation in solar receiver. Simulation results indicated that feeding carbon particles results to lower temperatures for the cavity walls and working fluid compare to the case that no carbon is injected. This finding is in accordance with our experimental results obtained from a cylindrical cavity receiver radiated by a 7 kW solar simulator. The results indicated that heat transfer within the system is highly influenced by the particle size. At particle sizes larger than 450 μm, carbon feeding increases the thermal efficiency of the system.


Author(s):  
Matthew Miguel Virgen ◽  
Fletcher Miller

Two significant goals in solar plant operation are lower cost and higher efficiencies. This is both for general competitiveness of solar technology in the energy industry, and also to meet the US DOE Sunshot Initiative Concentrating Solar Power (CSP) cost goals [1]. We present here an investigation on the effects of adding a bottoming steam power cycle to a solar-fossil hybrid CSP plant based on a Small Particle Heat Exchange Receiver (SPHER) driving a gas turbine as the primary cycle. Due to the high operating temperature of the SPHER being considered (over 1000 Celsius), the exhaust air from the primary Brayton cycle still contains a tremendous amount of exergy. This exergy of the gas flow can be captured in a heat recovery steam generator (HRSG), to generate superheated steam and run a bottoming Rankine cycle, in a combined cycle gas turbine (CCGT) system. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Due to the generalized nature of the bottoming cycle modeling, and the varying nature of solar power, special consideration had to be given to the behavior of the heat exchanger and Rankine cycle in off-design scenarios. Variable guide vanes (VGVs), which can control the mass flow rate through the gas turbine system, have been found to be an effective tool in providing operational flexibility to address the variable nature of solar input. The effect VGVs and the operating range associated with them are presented. Strategies for meeting a minimum solar share are also explored. Trends with respect to the change in variable guide vane angle are discussed, as well as the response of the HRSG and bottoming Rankine cycle in response to changes in the gas mass flow rate and temperature. System efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit lower than a turbine inlet temperature (TIT) limit leads two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the (CIT) limit, and as a result would have to bypass the combustor entirely and enter the turbine at a significantly lower temperature than nominal. Until that limit is completely eliminated through material or design improvements, this drawback can be addressed through strategic use of the variable guide vanes. Optimal operational strategy is ultimately decided by economics, plant objectives, or other market incentives.


Author(s):  
Olivier Berchtold ◽  
Fletcher Miller

The design of a secondary concentrator for the Small Particle Heat Exchange Receiver (SPHER) using a Monte Carlo Ray Tracing (MCRT) method is discussed in this paper. Applying basic MCRT rules, a modular solver logic for secondary concentrators is established. The logic is coded into FORTRAN subroutines to be compatible with MIRVAL, a ray trace code for heliostat fields created by Sandia National Laboratories. Based on a 3D Compound Parabolic Concentrator (3D-CPC) example the power of the simulation based on the Sandia heliostat field calculations is demonstrated. The results of the simulations are used to calculate the solar flux distributions in the ideal 3D CPC inlet and outlet planes as well as the incident ray distribution hitting the secondary concentrator. Code modifications to account for surface irregularities and spectral reflectivity are implemented in the appropriate FORTRAN subroutine. Using the automated simulation routines first the optimal receiver tilt angle and secondly the secondary concentrator acceptance angle are determined. These parameters combined with the fixed secondary concentrator outlet radius — which is determined by the SPHER window diameter — fully constrain the 3D CPC geometry. The flux maps generated using MATLAB post processing on the derived concentrator results clearly indicate the strengths and weaknesses of the specific concentrator and heliostat field combination. The influence of the secondary concentrator on the window incident flux distribution and window transmission, absorption and reflection properties is evaluated. Early findings using the code suggest higher yearly average power entering the receiver when compared to a non-secondary case. The reason for this effect is found in increased heliostat efficiency towards the edges of the heliostat field. At the same time the peak power hitting the window is found to increase very slightly only. This means the maximum window design specifications do not need to be adjusted dramatically to be able to accommodate the average power increase. First indications using the MCRT output in preliminary receiver simulations suggest increased receiver efficiency and a boost in receiver outlet gas temperature. The combined effect of these improvements is expected to raise overall power generation efficiency by improving the gas- / steam turbine combined cycle efficiency.


2011 ◽  
Vol 311-313 ◽  
pp. 276-282 ◽  
Author(s):  
You Jun Lu ◽  
Hong Fang Shen ◽  
Yan Ming Wang

High-temperature mechanical properties, machinability, oxidation resistance and thermal shock resistance of different content of carbon particles modified silicon carbide composite ceramics (Cp/SiC) prepared by pressureless sintering techniques were studied. Adhesion of Cp/SiC to melted glass under 1000°C was also observed. The results showed that 15-Cp/SiC had the optimum machinability and it also did not adhere to melted glass at high temperature. And flexural strength, hardness, and fracture toughness of 15-Cp/SiC is 136.5MPa, 274.6kgf/mm2, 2.58MPa•m1/2 respectively. The good performance of Cp/SiC made it possible to be used as high temperature glass fixture, which means that Cp/SiC can not only improve the service life of fixture materials, but also broaden the application fields of SiC ceramics.


2021 ◽  
pp. 1-15
Author(s):  
Hamed Abedini ◽  
Nesrin Ozalp

Abstract Carbon particles can be used as catalyst in solar reactors where they serve as radiant absorbent and nucleation sites for the heterogeneous decomposition reaction. Unlike commonly used metal catalysts, carbon catalyst does not have durability problem and high cost. However, in order to achieve sustainable catalytic decomposition of feedstock over carbon catalysts at elevated temperatures, the surface area of the carbon particles must be maintained. A subsequent treatment of deactivated carbon samples with CO2 at about 1000 °C would increase the surface and would recover the original activity as catalyst. In a windowed solar reactor, carbon particles are directly exposed to the high flux irradiation providing efficient radiation heat transfer directly to the reaction site. Therefore, one of the key parameters to achieve higher conversion efficiencies in a solar reactor is the presence and transport of carbon particles. In this paper, a transient one-dimensional model is presented to describe effect of carbon particle feeding on energy transport and temperature profile of a cavity-type solar receiver. The model was developed by dividing the receiver into several control volumes and formulating energy balance equations for gas phase, particles, and cavity walls within each control volume. Monte Carlo ray tracing (MCRT) method was used to determine the solar heat absorbed by particles and cavity walls, as well as the radiative exchange between particles and cavity walls. Model accuracy was verified by experimental work using a solar receiver where carbon particles were injected uniformly. Comparison of simulation results with the experimentally measured temperatures at three different locations on cavity receiver wall showed an average deviation of 3.81%. The model was then used to study the effect of carbon particle size and feeding rate on the heat transfer, temperature profile, and energy absorption of the solar receiver. Based on the simulation results, it was found that injection of carbon particles with a size bigger than 500 µm has no significant influence on heat transfer of the system. However, by reducing the particle size lower than 500 µm, temperature uniformity and energy absorption were enhanced.


2019 ◽  
Vol 5 (1) ◽  
pp. 75-80
Author(s):  
Vyacheslav S. Kuzevanov ◽  
Sergey K. Podgorny

The need to shape reactor cores in terms of coolant flow distributions arises due to the requirements for temperature fields in the core elements (Safety guide No. NS-G-1.12. 2005, IAEA nuclear energy series No. NP-T-2.9. 2014, Specific safety requirements No. SSR-2/1 (Rev.1) 2014). However, any reactor core shaping inevitably leads to an increase in the core pressure drop and power consumption to ensure the primary coolant circulation. This naturally makes it necessary to select a shaping principle (condition) and install heat exchange intensifiers to meet the safety requirements at the lowest power consumption for the coolant pumping. The result of shaping a nuclear reactor core with identical cooling channels can be predicted at a quality level without detailed calculations. Therefore, it is not normally difficult to select a shaping principle in this case, and detailed calculations are required only where local heat exchange intensifiers are installed. The situation is different if a core has cooling channels of different geometries. In this case, it will be unavoidable to make a detailed calculation of the effects of shaping and heat transfer intensifiers on changes in temperature fields. The aim of this paper is to determine changes in the maximum wall temperatures in cooling channels of high-temperature gas-cooled reactors using the combined effects of shaped coolant mass flows and heat exchange intensifiers installed into the channels. Various shaping conditions have been considered. The authors present the calculated dependences and the procedure for determining the thermal coolant parameters and maximum temperatures of heat exchange surface walls in a system of parallel cooling channels. Variant calculations of the GT-MHR core (NRC project No. 716 2002, Vasyaev et al. 2001, Neylan et al. 1994) with cooling channels of different diameters were carried out. Distributions of coolant flows and temperatures in cooling channels under various shaping conditions were determined using local resistances and heat exchange intensifiers. Preferred options were identified that provide the lowest maximum wall temperature of the most heat-stressed channel at the lowest core pressure drop. The calculation procedure was verified by direct comparison of the results calculated by the proposed algorithm with the CFD simulation results (ANSYS Fluent User’s Guide 2016, ANSYS Fluent. Customization Manual 2016, ANSYS Fluent. Theory Guide 2016, Shaw1992, Anderson et al. 2009, Petrila and Trif 2005, Mohammadi and Pironneau 1994).


2013 ◽  
Vol 832 ◽  
pp. 767-772 ◽  
Author(s):  
Shoichiro Ikeda ◽  
Shinji Kawasaki ◽  
Akinari Nobumoto ◽  
Hideo Ono ◽  
Shinji Ono ◽  
...  

We have produced nanocarbon suspension in pure water, which is named as Nanocaloid®, by a simple DC electrolysis from a synthetic graphite plates as anodes and SUS plates as cathodes in purified water at room temperature. The amount of carbon nanoparticles was monitored by the conductivity and pH value of the electrolyte solution, and also by a simple gravimetric way after drying the solution. If the current density increases, the diameter of the carbon particles becomes larger and the amount of precipitates becomes also large. It takes about six weeks to obtain about 0.4 wt% carbon suspension solution under the normal electrolysis conditions. Characterization of Nanocaloid®has been conducted to show unique properties and promising epoch-making applications such as solid lubricants for non-oily cutting fluids and conductive agents for reuse of deteriorated Pb-acid batteries. The performance of nanocarbon particles in oil lubricants in addition to the preparation will be reported.


Sign in / Sign up

Export Citation Format

Share Document