Engineering Approach for LCF Assessment of Porous Alloys

Author(s):  
Piotr Bednarz ◽  
Jaroslaw Szwedowicz

Most components used in gas and steam turbines are metallic parts produced by either casting or forging processes. Although process control works to eliminate defects, there can be variation in micro-porosity from component to component. Previously this micro-porosity was only able to be detected destructively using metallography. Using Computer Tomography (CT), one can find voids in the range of a few tenths of a millimeter and know the location of the voids with high precision. This allows one to map the defects present in each component onto the stress and temperature fields for that component. However, there is not yet universal agreement upon a consistent method to evaluate the effect of these small porosities on a component’s lifetime. Having a robust analysis tool to understand the impact of micro-porosity would decrease development costs, decrease the time to bring a product to market, and increase the likelihood of failure-free operation. This paper presents an approach using equivalent LCF material properties which avoids the need to explicitly model the morphology of the microstructure in the region of the micro-porosity. The homogenization methodology calculates new LCF curves depending on porosity ratios in material. This approach uses Morrow’s correlation factor of LCF cycles to crack initiation regarding energy amount dissipated in stable cycling (shake-down) and ultimate strain energy under monotonic loading. The paper generalizes Morrow’s postulate and formulates the hypothesis that energy stored and dissipated in the material under shake-down conditions corresponds directly to the number of LCF cycles to crack initiation. The paper demonstrates that the reduction of LCF life based on the porosity ratio agrees well with the experimental results. These results also show that the methodology is very sensitive to the void orientation and loading direction.

2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Piotr Bednarz ◽  
Jarosław Szwedowicz

Most components used in gas and steam turbines are metallic parts produced by either casting or forging processes. Although process control works to eliminate defects, there can be variation in microporosity from component to component. Previously, this microporosity was only able to be detected destructively using metallography. Using computer tomography (CT), one can find voids in the range of a few tenths of a millimeter and know the location of the voids with high precision. This allows one to map the defects present in each component onto the stress and temperature fields for that component. However, there is not yet universal agreement upon a consistent method to evaluate the effect of these small porosities on a components lifetime. Having a robust analysis tool to understand the impact of microporosity would decrease development costs, decrease the time to bring a product to market, and increase the likelihood of failure-free operation. This paper presents an approach using equivalent low-cycle fatigue (LCF) material properties which avoids the need to explicitly model the morphology of the microstructure in the region of the microporosity. The homogenization methodology calculates new LCF curves depending on porosity ratios in material. This approach uses Morrows correlation factor of LCF cycles to crack initiation regarding energy amount dissipated in stable cycling (shakedown) and ultimate strain energy under monotonic loading. The paper generalizes Morrows postulate and formulates the hypothesis that energy stored and dissipated in the material under shakedown conditions corresponds directly to the number of LCF cycles to crack initiation. The paper demonstrates that the reduction of LCF life based on the porosity ratio agrees well with the experimental results. These results also show that the methodology is very sensitive to the void orientation and loading direction.


2015 ◽  
Vol 3 (3) ◽  
Author(s):  
Imam Wibowo ◽  
Santi Putri Ananda

Purpose-To study the impact of the service quality and trust on customers loyalty of PT.Bank Mandiri,Tbk; Kelapa Gading Barat Branch. To improve the customers loyalty there are several factors that can influence them, such as service quality and trust. Methodology/approach-The research population was all customers PT.Bank Mandiri,Tbk;Kelapa Gading Barat Branch.According to the homogeneous population and based on the Gay and Diehl Theory, the samples taken were 50 people. Variables in this investigations consisted of: a).Independent Variables (exogenous): Service Quality (X1) and Trust (X2). b).The dependent variable (endogenous) Customers Loyalty (Y). Analysis tool being used is multiple linear regression which previously conducted validity and realiability. Findings-The result of investigations that service quality and trust simultaneously have a very strong contribution of 75,5% to the customers loyalty, and partially showed that service quality has significant and positive contribution to the customers loyalty of 64,8%. Partially, the trust variable has significant and positive contribution which amounted to 55,9% to the customers loyalty.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 31
Author(s):  
Jeremy Arancio ◽  
Ahmed Ould El Moctar ◽  
Minh Nguyen Tuan ◽  
Faradj Tayat ◽  
Jean-Philippe Roques

In the race for energy production, supplier companies are concerned by the thermal rating of offshore cables installed in a J-tube, not covered by IEC 60287 standards, and are now looking for solutions to optimize this type of system. This paper presents a numerical model capable of calculating temperature fields of a power transmission cable installed in a J-tube, based on the lumped element method. This model is validated against the existing literature. A sensitivity analysis performed using Sobol indices is then presented in order to understand the impact of the different parameters involved in the heating of the cable. This analysis provides an understanding of the thermal phenomena in the J-tube and paves the way for potential technical and economic solutions to increase the ampacity of offshore cables installed in a J-tube.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2690
Author(s):  
Bo Pan ◽  
Xuguang Wang ◽  
Zhenyang Xu ◽  
Lianjun Guo ◽  
Xuesong Wang

The Split Hopkinson Pressure Bar (SHPB) is an apparatus for testing the dynamic stress-strain response of the cement mortar specimen with pre-set joints at different angles to explore the influence of joint attitudes of underground rock engineering on the failure characteristics of rock mass structure. The nuclear magnetic resonance (NMR) has also been used to measure the pore distribution and internal cracks of the specimen before and after the testing. In combination with numerical analysis, the paper systematically discusses the influence of joint angles on the failure mode of rock-like materials from three aspects of energy dissipation, microscopic damage, and stress field characteristics. The result indicates that the impact energy structure of the SHPB is greatly affected by the pre-set joint angle of the specimen. With the joint angle increasing, the proportion of reflected energy moves in fluctuation, while the ratio of transmitted energy to dissipated energy varies from one to the other. NMR analysis reveals the structural variation of the pores in those cement specimens before and after the impact. Crack propagation direction is correlated with pre-set joint angles of the specimens. With the increase of the pre-set joint angles, the crack initiation angle decreases gradually. When the joint angles are around 30°–75°, the specimens develop obvious cracks. The crushing process of the specimens is simulated by LS-DYNA software. It is concluded that the stresses at the crack initiation time are concentrated between 20 and 40 MPa. The instantaneous stress curve first increases and then decreases with crack propagation, peaking at different times under various joint angles; but most of them occur when the crack penetration ratio reaches 80–90%. With the increment of joint angles in specimens through the simulation software, the changing trend of peak stress is consistent with the test results.


2000 ◽  
Author(s):  
Hongyan Zhang ◽  
Jacek Senkara ◽  
Xin Wu

Abstract In this paper mechanical aspects of cracking during single- and multi-spot welding of AA5754 was investigated by both experimental and analytical approaches. The impact of mechanical loading on crack initiation and propagation was studied with the consideration of various process parameters including the loading imposed by electrodes, the formation of liquid nugget, and constraining factors during and after welding. Tensile properties of AA5754 and their dependence on the temperature were tested at room and up to solidus temperatures, in order to provide a reference of cracking stress. Thermal-mechanical analysis was conducted based on the temperature field around the nugget and the state of stress encountered during welding. This analysis revealed that tensile stress might build up in the vicinity of the nugget during cooling, thus explained the experimental observation. General guidelines for suppressing cracking were proposed, i.e. to provide sufficient constraint around the weld spot during and after welding.


2020 ◽  
Vol 9 (4) ◽  
pp. 362-374
Author(s):  
J. C. Umavathi ◽  
Ali J. Chamkha

Nanotechnology has infiltrated into duct design in parallel with many other fields of mechanical, medical and energy engineering. Motivated by the excellent potential of nanofluids, a subset of materials engineered at the nanoscale, in the present work, a new mathematical model is developed for natural convection in a vertical duct containing nanofluid. Numerical scrutiny for the double-diffusive free and forced convection within a duct encumbered with nanofluid is performed. Buongiorno’s model is deployed to define the nanofluid. Robin boundary conditions are used to define the surface boundary conditions. Thermal and concentration equations envisage the viscous, Brownian motion, thermosphores of the nanofluid, Soret and Dufour effects. Using the Boussi-nesq approximation the solutal buoyancy effect as a result of gradients in concentration are incorporated. The conservation equations which are nonlinear are numerically estimated using fourth order Runge-Kutta methodology and analytically ratifying regular perturbation scheme. The mass, heat, nanoparticle concentration and species concentration fields on eight dimensionless physical parameters such as thermal and mass Grashof numbers, Brownian motion parameter, thermal parameter, Prandtl number, Eckert number, Schmidt parameter, and Soret parameter are calculated. The impact of these parameters are outlined pictorially. The velocity and temperature fields are boosted with the thermal Grashof number. The Soret and the Schemidt parameters reduces the nanoparticle volume fraction but it heightens the momentum, temperature and concentration. At the cold wall thermal and concentration Grashof numbers reduces the Nusselt values but they increase the Nusselt values at the hot wall. The reversal consequence was attained at the hot plate. The perturbation and Runge-Kutta solutions are equal in the nonappearance of Prandtl number. The (E. Zanchini, Int. J. Heat Mass Transfer 41, 3949 (1998)). results are restored for the regular fluid. The heat transfer rate is high for nanofluid when matched with regular fluid.


Author(s):  
Christian Kontermann ◽  
Henning Almstedt ◽  
Falk Müller ◽  
Matthias Oechsner

Changes within the global energy market and a demand for a more flexible operation of gas- and steam-turbines leads to higher utilization of main components and raises the question how to deal with this challenge. One strategy to encounter this is to increase the accuracy of the lifetime assessment by quantifying and reducing conservatisms. At first the impact of considering a fracture mechanical notch support under creep-fatigue loading is studied by discussing the results of an extensive experimental program performed on notched round-bars under global strain control. A proposal how to consider this fracture mechanical notch support within a lifetime assessment is part of the discussion of the second part. Here, a theoretical FEM-based concept is introduced and validated by comparing the theoretical prediction with the results of the previously mentioned experimental study. Finally, the applicability of the developed and validated FEM-based procedure is demonstrated.


Author(s):  
Luis San Andrés ◽  
Feng Yu ◽  
Kostandin Gjika

Engine oil lubricated (semi) floating ring bearing (S)FRB systems in passenger vehicle turbochargers (TC) operate at temperatures well above ambient and must withstand large temperature gradients that can lead to severe thermo-mechanical induced stresses. Physical modeling of the thermal energy flow paths and an effective thermal management strategy are paramount to determine safe operating conditions ensuring the TC component mechanical integrity and the robustness of its bearing system. On occasion, the selection of one particular bearing parameter to improve a certain performance characteristic could be detrimental to other performance characteristics of a TC system. The paper details a thermohydrodynamic model to predict the hydrodynamic pressure and temperature fields and the distribution of thermal energy flows in the bearing system. The impact of the lubricant supply conditions (pressure and temperature), bearing film clearances, oil supply grooves on the ring ID surface are quantified. Lubricating a (S)FRB with either a low oil temperature or a high supply pressure increases (shear induced) heat flow. A lube high supply pressure or a large clearance allow for more flow through the inner film working towards drawing more heat flow from the hot journal, yet raises the shear drag power as the oil viscosity remains high. Nonetheless, the peak temperature of the inner film is not influenced much by the changes on the way the oil is supplied into the film as the thermal energy displaced from the hot shaft into the film is overwhelming. Adding axial grooves on the inner side of the (S)FRB improves its dynamic stability, albeit increasing the drawn oil flow as well as the drag power and heat flow from the shaft. The predictive model allows to identify a compromise between different parameters of groove designs thus enabling a bearing system with a low power consumption.


2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2018 ◽  
Vol 35 (14) ◽  
pp. 2492-2494
Author(s):  
Tania Cuppens ◽  
Thomas E Ludwig ◽  
Pascal Trouvé ◽  
Emmanuelle Genin

Abstract Summary When analyzing sequence data, genetic variants are considered one by one, taking no account of whether or not they are found in the same individual. However, variant combinations might be key players in some diseases as variants that are neutral on their own can become deleterious when associated together. GEMPROT is a new analysis tool that allows, from a phased vcf file, to visualize the consequences of the genetic variants on the protein. At the level of an individual, the program shows the variants on each of the two protein sequences and the Pfam functional protein domains. When data on several individuals are available, GEMPROT lists the haplotypes found in the sample and can compare the haplotype distributions between different sub-groups of individuals. By offering a global visualization of the gene with the genetic variants present, GEMPROT makes it possible to better understand the impact of combinations of genetic variants on the protein sequence. Availability and implementation GEMPROT is freely available at https://github.com/TaniaCuppens/GEMPROT. An on-line version is also available at http://med-laennec.univ-brest.fr/GEMPROT/. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document