Key Reliability Factors for IC and MEMS Packaging

2000 ◽  
Author(s):  
Reza Ghaffarian

Abstract During the last decade, research and development of microelectromechanical systems (MEMS) has shown a significant promise for a variety of commercial applications including automobile and medical purposes. For example, accelerometers are widely used for air bag in automobile and pressure sensors for various industrial applications. Some of the MEMS devices have potential to become the commercial-off-the-shelf (COTS) components. While high reliability/harsh environmental applications including aerospace require much more sophisticated technology development, they would achieve significant cost savings if they could utilize COTS components in their systems. This paper reviews the current status of IC and MEMS packaging technology with emphasis on reliability, compares the norm for IC packaging reliability evaluation and identifies challenges for development of reliability methodologies for MEMS, and finally proposes the use of COTS MEMS in order to start generating statistically meaningful reliability data as a vehicle for future standardization of reliability test methodology for MEMS packaging.

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Kaysar Rahim ◽  
Ahsan Mian

The packaging of electronic and microelectromechanical systems (MEMS) devices is an important part of the overall manufacturing process as it ensures mechanical robustness as well as required electrical/electromechanical functionalities. The packaging integration process involves the selection of packaging materials and technology, process design, fabrication, and testing. As the demand of functionalities of an electronic or MEMS device is increasing every passing year, chip size is getting larger and is occupying the majority of space within a package. This requires innovative packaging technologies so that integration can be done with less thermal/mechanical effect on the nearby components. Laser processing technologies for electronic and MEMS packaging have potential to obviate some of the difficulties associated with traditional packaging technologies and can become an attractive alternative for small-scale integration of components. As laser processing involves very fast localized and heating and cooling, the laser can be focused at micrometer scale to perform various packaging processes such as dicing, joining, and patterning at the microscale with minimal or no thermal effect on surrounding material or structure. As such, various laser processing technologies are currently being explored by researchers and also being utilized by electronic and MEMS packaging industries. This paper reviews the current and future trend of electronic and MEMS packaging and their manufacturing processes. Emphasis is given to the laser processing techniques that have the potential to revolutionize the future manufacturing of electronic and MEMS packages.


2003 ◽  
Vol 125 (4) ◽  
pp. 816-823 ◽  
Author(s):  
Srinivas A. Tadigadapa ◽  
Nader Najafi

This paper presents a discussion of some of the major issues that need to be considered for the successful commercialization of MEMS products. The diversity of MEMS devices and historical reasons have led to scattered developments in the MEMS manufacturing infrastructure. A good manufacturing strategy must include the complete device plan including package as part of the design and process development of the device. In spite of rapid advances in the field of MEMS there are daunting challenges that lie in the areas of MEMS packaging, and reliability testing. CAD tools for MEMS are starting to get more mature but are still limited in their overall performance. MEMS manufacturing is currently at a fragile state of evolution. In spite of all the wonderful possibilities, very few MEMS devices have been commercialized. In our opinion, the magnitude of the difficulty of fabricating MEMS devices at the manufacturing level is highly underestimated by both the current and emerging MEMS communities. A synopsis of MEMS manufacturing issues is presented here.


Author(s):  
Sushmita Challa ◽  
M. Shafquatul Islam ◽  
Danming Wei ◽  
Jasmin Beharic ◽  
Dan O. Popa ◽  
...  

Abstract Fabrics and fibrous materials offer a soft, porous, and flexible substrate for microelectromechanical systems (MEMS) packaging in breathable, wearable formats that allow airflow. Device-on-fiber systems require developments in the field of E-Textiles including smart fibers, functional fiber intersections, textile circuit routing, and alignment methods that adapt to irregular materials. In this paper, we demonstrate a MEMS-on-fabric layout workflow that obtains fiber intersection locations from high-resolution fabric images. We implement an image processing algorithm to drive the MEMS layout software, creating an individualized MEMS “gripper” layout designed to grasp fibers on a specific fabric substrate during a wafer-to-fabric parallel transfer step. The efficiency of the algorithm in terms of a number of intersections identified on the complete image is analyzed. The specifications of the MEMS layout design such as the length of the MEMS gripper, spatial distribution, and orientation are derivable from the MATLAB routine implemented on the image. Furthermore, the alignment procedure, tolerance, and hardware setup for the alignment method of the framed sample fabric to the wafer processed using the custom gripper layout are discussed along with the challenges of the release of MEMS devices from the Si substrate to the fabric substrate.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Masayoshi Esashi

AbstractI have been developing MEMS (microelectromechanical systems) technology and supporting the industry through collaboration. A facility was built in house on a 20 mm square wafer for use in prototyping MEMS and ICs (integrated circuits). The constructed MEMS devices include commercialized integrated capacitive pressure sensors, electrostatically levitated rotational gyroscopes, and two-axis optical scanners. Heterogeneous integration, which is a MEMS on an LSI (large-scale integration), was developed for sophisticated systems using LSI made in a foundry. This technology was applied for tactile sensor networks for safe robots, multi FBAR filters on LSI, active-matrix multielectron emitter arrays, and so on. The facility used to produce MEMS on 4- and 6-inch wafers was developed based on an old semiconductor factory and has been used as an open hands-on access facility by many companies. Future directions of MEMS research are discussed.


2002 ◽  
Vol 124 (06) ◽  
pp. 38-41 ◽  
Author(s):  
John DeGaspari

This article highlights that there is potential demand for microelectromechanical systems (MEMS) devices across a range of industries. In 2002, the five leading applications of MEMS will use 21.5 million disposable blood pressure sensors, 28.7 million manifold absolute pressure sensors for engines, 85 million packaged airbag accelerometers, 425 million inkjet printer heads, and a whopping 1.58 billion read/write magnetic heads for computer hard drives. In MEMS, process is driven by design, so it is important for companies seeking to commercialize a micro device to evaluate the capabilities of a foundry. Industry groups are starting to recognize standardization as an issue, and are focusing on fabrication. The MEMS Industry Group, a trade association based in Pittsburgh, identified standardization as a key challenge in its 2001 annual report. The Group plans to issue a report on foundries and fabrication sooner.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 351 ◽  
Author(s):  
Meng ◽  
Cheng ◽  
Yang ◽  
Sun ◽  
Luo

The through-silicon-vias (TSVs) process is a vital technology in microelectromechanical systems (MEMS) packaging. The current via filling technique based on copper electroplating has many shortcomings, such as involving multi-step processes, requiring sophisticated equipment, low through-put and probably damaging the MEMS devices susceptible to mechanical polishing. Herein, a room temperature treatable, high-efficient and low-cost seedless TSV process was developed with a one-step filling process by using novel electrically conductive adhesives (ECAs) filled with silver nanowires. The as-prepared ECAs could be fully cured at room temperature and exhibited excellent conductivity due to combining the benefits of both polymethyl methacrylate (PMMA) and silver nanowires. Complete filling of TSVs with the as-prepared 30 wt% silver nanowires ECAs was realized, and the resistivity of a fully filled TSV was as low as 10−3 Ω·cm. Furthermore, the application of such novel TSV filling process could also be extended to a wide range of different substrates, showing great potential in MEMS packaging, flexible microsystems and many other applications.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
V. Schirosi ◽  
G. Del Re ◽  
L. Ferrari ◽  
P. Caliandro ◽  
L. Rizzi ◽  
...  

Microelectromechanical systems are often used for their enormous capability and good qualities in T/R modules especially for space modular applications. High isolation and very low insertion loss are guaranteed by their intrinsic working principle. This is a very robust, flexible, and low-cost technology, and it provides high reliability, good reproducibility, and complete fulfillment of technical requirements.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 414
Author(s):  
Marta Maria Kluba ◽  
Jian Li ◽  
Katja Parkkinen ◽  
Marcus Louwerse ◽  
Jaap Snijder ◽  
...  

Several Silicon on Insulator (SOI) wafer manufacturers are now offering products with customer-defined cavities etched in the handle wafer, which significantly simplifies the fabrication of MEMS devices such as pressure sensors. This paper presents a novel cavity buried oxide (BOX) SOI substrate (cavity-BOX) that contains a patterned BOX layer. The patterned BOX can form a buried microchannels network, or serve as a stop layer and a buried hard-etch mask, to accurately pattern the device layer while etching it from the backside of the wafer using the cleanroom microfabrication compatible tools and methods. The use of the cavity-BOX as a buried hard-etch mask is demonstrated by applying it for the fabrication of a deep brain stimulation (DBS) demonstrator. The demonstrator consists of a large flexible area and precisely defined 80 µm-thick silicon islands wrapped into a 1.4 mm diameter cylinder. With cavity-BOX, the process of thinning and separating the silicon islands was largely simplified and became more robust. This test case illustrates how cavity-BOX wafers can advance the fabrication of various MEMS devices, especially those with complex geometry and added functionality, by enabling more design freedom and easing the optimization of the fabrication process.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1690
Author(s):  
Jian Qiao ◽  
Peng Yu ◽  
Yanxiong Wu ◽  
Taixi Chen ◽  
Yixin Du ◽  
...  

Amorphous alloys have emerged as important materials for precision machinery, energy conversion, information processing, and aerospace components. This is due to their unique structure and excellent properties, including superior strength, high elasticity, and excellent corrosion resistance, which have attracted the attention of many researchers. However, the size of the amorphous alloy components remains limited, which affects industrial applications. Significant developments in connection with this technology are urgently needed. Laser welding represents an efficient welding method that uses a laser beam with high energy-density for heating. Laser welding has gradually become a research hotspot as a joining method for amorphous alloys due to its fast heating and cooling rates. In this compact review, the current status of research into amorphous-alloy laser welding technology is discussed, the influence of technological parameters and other welding conditions on welding quality is analyzed, and an outlook on future research and development is provided. This paper can serve as a useful reference for both fundamental research and engineering applications in this field.


2021 ◽  
pp. 1-15
Author(s):  
Alaa Hasan ◽  
Osama M. Selim ◽  
Mohamed Abousabae ◽  
Ryoichi S. Amano ◽  
Wilkistar Otieno

Abstract This paper highlights the expected versus actual outcomes of 152 energy analyses that were performed between 2011 and 2020. The 1,317 energy assessment recommendations (ARs) are grouped into eight categories. This study adopted four measures per category: annual electricity savings, annual gas savings, annual cost savings, and annual CO2 emission reduction. The first part of the analysis compares the expected recommendations to each measure's actually implemented values for the eight categories. It was found that the percentages of the actual to the expected electricity, gas, and cost savings are 26.6%, 11.4%, and 17.1%, respectively. In contrast, the percentage of the actual to the expected CO2 reduction is 22%. Moreover, the second part of the analysis presents each category's implementation rate and the reasons for rejecting the unimplemented ARs. Cash flow and expensive initial investment resulted in rejecting 25% of ARs. Finally, the study proposes techniques and strategies to increase ARs' implementation rate and improve all private energy services industries' implementation rate. An exergy analysis is added to show the improvement that energy assessment achieves regarding exergy and exergy efficiencies of different industrial applications.


Sign in / Sign up

Export Citation Format

Share Document