Cooling Flow Simulation in the Enclosure of Mobile Generator

Author(s):  
J. Xie ◽  
R. S. Amano

A thermal and airflow simulation model is developed for three-dimensional cooling flow study of ventilation and heat transfer inside a mobile generator’s enclosure. The purpose of this design is to achieve better sound attenuation while keeping proper cooling of the engine and generator. This paper focuses its objectives on the adjustment and improvement of cooling performances of some design factors like vent size, vent positions, fan’s flow rate and airflow route based on the CFD approach. A zero-equation HVAC turbulence model was employed and the simulation results were compared with the standard k-ε model. Numerical results show that the proper distribution in the intake vents helps in achieving uniform cooling flow distributions by avoiding the occurrence of hot spots on the engine and generator surfaces. Pressure drop through muffler and radiator are both important factors. Effective flow path arrangement is also found to be one of the most fatal factors in the thermal and noise management.

1998 ◽  
Vol 120 (4) ◽  
pp. 840-857 ◽  
Author(s):  
M. P. Dyko ◽  
K. Vafai

A heightened awareness of the importance of natural convective cooling as a driving factor in design and thermal management of aircraft braking systems has emerged in recent years. As a result, increased attention is being devoted to understanding the buoyancy-driven flow and heat transfer occurring within the complex air passageways formed by the wheel and brake components, including the interaction of the internal and external flow fields. Through application of contemporary computational methods in conjunction with thorough experimentation, robust numerical simulations of these three-dimensional processes have been developed and validated. This has provided insight into the fundamental physical mechanisms underlying the flow and yielded the tools necessary for efficient optimization of the cooling process to improve overall thermal performance. In the present work, a brief overview of aircraft brake thermal considerations and formulation of the convection cooling problem are provided. This is followed by a review of studies of natural convection within closed and open-ended annuli and the closely related investigation of inboard and outboard subdomains of the braking system. Relevant studies of natural convection in open rectangular cavities are also discussed. Both experimental and numerical results obtained to date are addressed, with emphasis given to the characteristics of the flow field and the effects of changes in geometric parameters on flow and heat transfer. Findings of a concurrent numerical and experimental investigation of natural convection within the wheel and brake assembly are presented. These results provide, for the first time, a description of the three-dimensional aircraft braking system cooling flow field.


Author(s):  
L. W. Soma ◽  
F. E. Ames ◽  
S. Acharya

The trailing edge of a vane is one of the most difficult areas to cool due to a narrowing flow path, high external heat transfer rates, and deteriorating external film cooling protection. Converging pedestal arrays are often used as a means to provide internal cooling in this region. The thermally induced stresses in the trailing edge region of these converging arrays have been known to cause failure in the pedestals of conventional solidity arrays. The present paper documents the heat transfer and pressure drop through two high solidity converging rounded diamond pedestal arrays. These arrays have a 45 percent pedestal solidity. One array which was tested has nine rows of pedestals with an exit area in the last row consistent with the convergence. The other array has eight rows with an expanded exit in the last row to enable a higher cooling air flow rate. The expanded exit of the eight row array allows a 30% increase in the coolant flow rate compared with the nine row array for the same pressure drop. Heat transfer levels correlate well based on local Reynolds numbers but fall slightly below non converging arrays. The pressure drop across the array naturally increases toward the trailing edge with the convergence of the flow passage. A portion of the cooling air pressure drop can be attributed to acceleration while a portion can be attributed to flow path losses. Detailed array static pressure measurements provide a means to develop a correlation for the prediction of pressure drop across the cooling channel. Measurements have been acquired over Reynolds numbers based on exit flow conditions and the characteristic pedestal length scale ranging from 5000 to over 70,000.


2013 ◽  
Vol 465-466 ◽  
pp. 500-504 ◽  
Author(s):  
Shahrin Hisham Amirnordin ◽  
Hissein Didane Djamal ◽  
Mohd Norani Mansor ◽  
Amir Khalid ◽  
Md Seri Suzairin ◽  
...  

This paper presents the effect of the changes in fin geometry on pressure drop and heat transfer characteristics of louvered fin heat exchanger numerically. Three dimensional simulation using ANSYS Fluent have been conducted for six different configurations at Reynolds number ranging from 200 to 1000 based on louver pitch. The performance of this system has been evaluated by calculating pressure drop and heat transfer coefficient. The result shows that, the fin pitch and the louver pitch have a very considerable effect on pressure drop as well as heat transfer rate. It is observed that increasing the fin pitch will relatively result in an increase in heat transfer rate but at the same time, the pressure drop will decrease. On the other hand, low pressure drop and low heat transfer rate will be obtained when the louver pitch is increased. Final result shows a good agreement between experimental and numerical results of the louvered fin which is about 12%. This indicates the capability of louvered fin in enhancing the performance of heat exchangers.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
N. J. Fiala ◽  
I. Jaswal ◽  
F. E. Ames

Heat transfer and film cooling distributions have been acquired for a vane trailing edge with letterbox partitions. Additionally, pressure drop data have been experimentally determined across a pin fin array and a trailing edge slot with letterbox partitions. The pressure drop across the array and letterbox trailing edge arrangement was measurably higher than for the gill slot geometry. Experimental data for the partitions and the inner suction surface region downstream from the slot have been acquired over a four-to-one range in vane exit condition Reynolds number (500,000, 1,000,000, and 2,000,000), with low (0.7%), grid (8.5%), and aerocombustor (13.5%) turbulence conditions. At these conditions, both heat transfer and adiabatic film cooling distributions have been documented over a range of blowing ratios (0.47≤M≤1.9). Heat transfer distributions on the inner suction surface downstream from the slot ejection were found to be dependent on both ejection flow rate and external conditions. Heat transfer on the partition side surfaces correlated with both exit Reynolds number and blowing ratio. Heat transfer on partition top surfaces largely correlated with exit Reynolds number but blowing ratio had a small effect at higher values. Generally, adiabatic film cooling levels on the inner suction surface are high but decrease near the trailing edge and provide some protection for the trailing edge. Adiabatic effectiveness levels on the partitions correlate with blowing ratio. On the partition sides adiabatic effectiveness is highest at low blowing ratios and decreases with increasing flow rate. On the partition tops adiabatic effectiveness increases with increasing blowing ratio but never exceeds the level on the sides. The present paper, together with a companion paper that documents letterbox trailing edge aerodynamics, is intended to provide engineers with the heat transfer and aerodynamic loss information needed to develop and compare competing trailing edge designs.


Author(s):  
Ece Özkaya ◽  
Selin Aradag ◽  
Sadik Kakac

In this study, three-dimensional computational fluid dynamics (CFD) analyses are performed to assess the thermal-hydraulic characteristics of a commercial Gasketed Plate Heat Exchangers (GPHEx) with 30 degrees of chevron angle (Plate1). The results of CFD analyses are compared with a computer program (ETU HEX) previously developed based on experimental results. Heat transfer plate is scanned using photogrammetric scan method to model GPHEx. CFD model is created as two separate flow zones, one for each of hot and cold domains with a virtual plate. Mass flow inlet and pressure outlet boundary conditions are applied. The working fluid is water. Temperature and pressure distributions are obtained for a Reynolds number range of 700–3400 and total temperature difference and pressure drop values are compared with ETU HEX. A new plate (Plate2) with corrugation pattern using smaller amplitude is designed and analyzed. The thermal properties are in good agreement with experimental data for the commercial plate. For the new plate, the decrease of the amplitude leads to a smaller enlargement factor which causes a low heat transfer rate while the pressure drop remains almost constant.


Author(s):  
V. P. Malapure ◽  
A. Bhattacharya ◽  
Sushanta K. Mitra

This paper presents a three-dimensional numerical analysis of flow and heat transfer over plate fins in a compact heat exchanger used as a radiator in the automotive industry. The aim of this study is to predict the heat transfer and pressure drop in the radiator. FLUENT 6.1 is used for simulation. Several cases are simulated in order to investigate the coolant temperature drop, heat transfer coefficient for the coolant and the air side along with the corresponding pressure drop. It is observed that the heat transfer and pressure drop fairly agree with experimental data. It is also found that the fin temperature depends on the frontal air velocity and the coolant side heat transfer coefficient is in good agreement with classical Dittus–Boelter correlation. It is also found that the specific dissipation increases with the coolant and the air flow rates. This work can further be extended to perform optimization study for radiator design.


Author(s):  
Puxuan Li ◽  
Steve J. Eckels

Accurate measurements of heat transfer and pressure drop play important roles in thermal designs in a variety of pipes and ducts. In this study, the convective heat transfer coefficient was measured with a semi-local surface average based on Newton’s Law of cooling. Flow and heat transfer data for different Reynolds numbers were collected and compared in a duct with smooth walls. Pressure drop was measured with a pressure transducer from OMEGA Engineering Inc. The experimental results were compared with numerical estimations generated in ANSYS Fluent. Fluent contains the broad physical modeling capabilities needed to model heat transfer and pressure drop in the duct. Thermal conduction and convection in the three-dimensional (3D) duct are simulated together. Special cares for selecting the viscosity models and the near-wall treatments are discussed. The goal of the paper is to find appropriate numerical models for simulating heat conduction, heat convection and pressure drop in the duct with different Reynolds numbers. The relationship between the heat transfer coefficient and Reynolds numbers is discussed. Heat flux and inlet temperature measured in the experiment are applied to the boundary conditions. The study provides the unique opportunity to verify the accuracy of numerical models on heat transfer and pressure drop in ANSYS Fluent.


1992 ◽  
Vol 114 (1) ◽  
pp. 29-34 ◽  
Author(s):  
R. A. Wirtz ◽  
Weiming Chen

Velocimetry, heat transfer, and pressure drop experiments are reported for laminar/transitional air flow in a channel containing rectangular transverse ribs located along one channel wall. The geometry is intended to represent an array of low profile electronic packages. At fixed pumping power per unit channel volume, the heat transfer rate per unit volume is independent of rib-to-rib spacing and increases with decreasing wall-to-wall spacing. The fully developed, rib-average heat transfer coefficient is found to be linearly related to the maximum streamwise rms turbulence measured above the rib-tops. Linear correlations, in terms of a descriptor of the rms streamwise turbulence, are shown to unify heat transfer/pressure drop data for channels containing either two-or three-dimensional protrusions.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Andreas Pesch ◽  
Steffen Melzer ◽  
Stephan Schepeler ◽  
Tobias Kalkkuhl ◽  
Romuald Skoda

Abstract A comparative study on the highly unsteady flow field in single- and two-blade pumps is performed. Stationary pump characteristics, as well as pressure and flow rate fluctuations, are presented. Wall pressure fluctuations were measured in the suction and pressure pipe as well as at several locations within the volute casing by piezoresistive transducers. Flow rate fluctuations were evaluated by a recently presented measurement system based on an electromagnetic flowmeter (Melzer et al. 2020, “A System for Time-Fluctuating Flow Rate Measurements in a Single-Blade Pump Circuit,” Flow Meas. Instrum., 71, p. 101675). Measurements were accompanied by three-dimensional (3D) flow simulations with the open-source cfd software foam-extend. A thorough grid study and validation of the simulation were performed. By a complementary analysis of measurement and simulation results, distinctive differences between both pump types were observed, e.g., flow rate and pressure fluctuation magnitudes are significantly higher in the single-blade pump. In relation to the respective mean values, flow rate fluctuation magnitudes are one order lower than pressure fluctuation magnitudes for both pumps. For the two-blade pump, fluctuations attenuate toward overload irrespective of the particular pump circuit, while they rise for the single-blade pump. 3D simulation results yield detailed insight into the spatially and temporally resolved impeller–volute interaction and reveal that the single-blade impeller pushes a high-pressure flow region forward in a way as a positive displacement pump, resulting in an inherently fluctuating velocity and pressure distribution within the volute.


2016 ◽  
Vol 836 ◽  
pp. 102-108
Author(s):  
Mirmanto ◽  
Emmy Dyah Sulistyowati ◽  
I Ketut Okariawan

In the rainy season, in tropical countries, to dry stuffs is difficult. Using electrical power or fossil energy is an expensive way. Therefore, it is wise to utilize heat waste. A device that can be used for this purpose is called radiator. The effect of mass flow rate on pressure drop and heat transfer for a dryer room radiator have been experimentally investigated. The room model size was 1000 mm x 1000 mm x 1000 mm made of plywood and the overall radiator dimension was 360 mm x 220 mm x 50 mm made of copper pipes with aluminium fins. Three mass flow rates were investigated namely 12.5 g/s, 14 g/s and 16.5 g/s. The water temperature at the entrance was increased gradually and then kept at 80°C. The maximum temperature reached in the dryer room was 50°C which was at the point just above the radiator. The effect of the mass flow rate on the room temperature was insignificant, while the effect on the pressure drop was significant. Moreover, the pressure drop decreased as the inlet temperature increased. In general, the radiator is recommended to be used as the heat source in a dryer room.


Sign in / Sign up

Export Citation Format

Share Document