Recovery of Paper Fibers From TetraPak® Packaging: Material and Energetic Valorization of the Remaining Fraction

Author(s):  
Alexandra Castro ◽  
Cândida Vilarinho ◽  
Jorge Araújo ◽  
Joana Carvalho

In this study, a methodology was developed for the treatment/valorization of all the constituent fractions of TetraPak ®, proposing pyrolysis technology for the recycling of plastic and aluminum fraction, resulting in the recovery process of the paper fibers. In percentage these three elements are distributed approximately as follows: 70% of cardboard (kraft paper), 25% of low-density polyethylene (LDPE) and 5% of aluminum foil [1, 2, 3, 4]. It was developed an integrated and innovative methodology that starts with the recovery of the paper fibers, which must reintegrate the production cycle of the packaging company. Followed by the valorization of the remaining fraction, this fraction consists in plastic and aluminum, and is valorized through a pyrolysis process. The pyrolysis process is an irreversible chemical modification of compounds by the action of heat and in the absence of oxygen. This technology are used for energy recovery, which causes thermal degradation of the compounds in anoxic environment, and is therefore considered an environmentally friendly technology and it is considered one of the alternative routes for treatment of waste TetraPak ® packaging [4]. The pyrolysis tests were carried out in laboratory reactor at different temperatures (between 300 and 500°C). At the end of this process the aluminum was recovered and it was produced a synthesis gas with added value. This produced gas was constituted by CO, H2, CO2 e CH4 with maximum values recorded of 5000, 3200 e 7.5 ppm e 40%, respectively. The laboratory test were confirmed by the analysis of the thermal behavior by DTA/TGA and it was confirmed that the temperature of 500°C is the most indicated for energetic valorization of the aluminum, paper and plastic fraction.

Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 20
Author(s):  
Gordon Robertson

Aseptic beverage cartons are multilayer polymer-coated paperboards with a layer of aluminum foil. Due to their multilayer structure it is commonly assumed that they cannot be recycled. This is not the case and this review details the multifarious processes that are used to recycle aseptic beverage cartons. Hydrapulping to recover the paper fibers that constitute 75% of the carton is the most widespread process, followed by the manufacture of construction materials such as boards and tiles which utilize the complete carton. A range of mechanical, chemical and thermal processes are used to separate the PolyAl (polyethylene and aluminum) residual that remains after the paper fibers have been recovered. The simplest process involves agglutination followed by extrusion to obtain pellets that can then be used in industrial and consumer products or combined with other materials such as lignocellulosic wastes. Chemical approaches involve the solubilization of polyethylene and the removal of aluminum. Various thermal processes have also been investigated and a novel microwave-induced pyrolysis process appears the most commercially viable. It is concluded that the focus in future years is likely to be on recycling cartons into construction materials where there is a theoretical yield of 100% compared with 75% for hydrapulping.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 141
Author(s):  
F. J. G. Silva ◽  
M. R. Soares ◽  
L. P. Ferreira ◽  
A. C. Alves ◽  
M. Brito ◽  
...  

The structure of car seats is becoming increasingly complex, with mixing of wire conformation and plastic injection. The plastic over-molding process implies some labor, which can be reduced if novel solutions are applied in this manufacturing area. The handling of the wires used in car seats is the main problem identified in the process, wasting time both in the feeding and in the extraction of the molds used in the wire over-molding process. However, these machines are usually extremely compact and the free space around them is too short. In classic molding injection machines, there are just two half-molds, the female, and the male. In the over-molding process of wires used in car seats, three half-molds are used in order to increase the cycle time. Thus, to solve this problem, the classic robotic solutions are not appliable due to lack of space and elevated cost. This work describes the development of an automated solution able to handle the wires in both the feeding and the extracting phases of the production cycle, avoiding the traditional labor costs associated with this type of machine. Departing from an industrial need, the developed novel solution is described in detail and can be successfully adapted to other situations of low added-value products where it is needed to increase the productivity and competitiveness of the product. The system developed uses mechanical and pneumatic solutions which, combined, can be used to solve the identified problem, occupying a restricted space and requiring a small budget. This solution can be translated into guidelines that will allow the analysis of situations where the same system can be applied.


2010 ◽  
Vol 16 (3) ◽  
pp. 233-240 ◽  
Author(s):  
F.V. Romeo ◽  
S. De Luca ◽  
A. Piscopo ◽  
V. Santisi ◽  
M. Poiana

Almond pastries are typical cookies of the south of Italy. Introduction of new packaging for this kind of cookies requires shelf-life assessments. This study, related to different types of packaging under various storage conditions of time and temperature, identifies critical parameters, as color and texture, to track during storage studies and to extend the shelf-life. The cookies were packed in three different ways and stored at two different temperatures. The pastries were separately stored: (1) in polyvinylchloride film; (2) in aluminum foil (ALL); (3) with modified atmosphere (MAP) in plastic vessels sealed into a polyamide/ polyethylene film; and (4) in vessels without any polymeric film. The storage temperatures were 20 and 30 °C. Evolution of texture, water activity, dry matter and color was assessed. Texture was evaluated by a texture analyzer with a puncturing test. Indices for hardening were the area under the curve (N × mm) up to 10 mm of distance, and the maximum force (N) corresponding to the crust fracture. The best results were obtained with ALL packaging and MAP condition, and above all, in all the trials a temperature of 30 °C reduced the crust hardness.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-8
Author(s):  
Raswen Efendi ◽  
Dewi Fortuna Ayu ◽  
Nadya Nofaren

The purpose of this research is to estimate the shelf life of egg rendang  that is packed with High Density Polyetilen (HDPE) plastic, aluminium foil, and vacuum aluminium foil. Estimation of shelf life using the acceleration method by storing the egg rendang for 30 days at three different temperatures, i.e, 30°C, 35°C, and 40°C. The parameters observed during the storage process were sensory assessments of rancidity and thiobarbituric acid (TBA) values of egg rendang. Data were analyzed using linear regression and the equations obtained were used to calculate the shelf life of egg rendang at normal temperature, which is 27°C. The egg rendang stored using vacuum aluminium foil packaging have a longer shelf life compared to HDPE packaging and non vacuum aluminum foil. The egg rendang shelf life packed with aluminium foil vacuum based on rancidity sensory test was 100 days, with the regression equation y =-7241,9x+20,317, an activation energy (Ea) of 14.382,4 kal.mol-1, and the value of quality degradation (k) was 0.021 quality unit per day. The egg rendang shelf life packed with aluminium foil vacuum based on the TBA value was 99.50 days, with the regression equation y =-6995,3x+18,577, the activation energy (Ea) of 13.892.7 kal.mol-1, and the value of quality degradation (k) was 0.008 quality unit per day.


Author(s):  
Chavan Ramesh Fulchand ◽  
Jadhao Vikas Gunvantrao ◽  
Ingle Murlidhar Pralhad

In the present investigation a study was conducted to prepare fruit leathers from two different fruit pulps i.e. papaya and apple in various proportions. Further study was carried out in order to evaluate the vitamin C retention of prepared leathers at different temperatures such as 55°C, 65°C and 75°C. All fruit leathers were then analyzed for their organoleptic characteristics such as color, flavor, taste, appearance and overall acceptability during storage period. A study was also carried out to evaluate the moisture retention in storage of the prepared leathers in different packaging materials such as LDPE, HDPE, aluminum foil and PET jar. The results revealed that the fruit leathers dried at 65°C shown highest vitamin-C retention with better retention of sensory properties. All leathers remained unchanged during storage period but the leather stored in aluminum foil has shown a remarkable ranking as compared to others during storage period. LDPE package has shown greater moisture fluctuation, while aluminum foil shown significant moisture retention during storage. It was also observed during the study that all fruit leathers had identical color, flavor and appearance which cannot be compared with one another.


2020 ◽  
Author(s):  
Frantseska-Maria Pellera ◽  
Panagiotis Regkouzas ◽  
Ioanna Manolikaki ◽  
Evan Diamadopoulos

<p>In the last years, global focus has been directing towards the circular economy model. In this framework materials that had so far been regarded as waste, are now considered as valuable resources for both energy and added-value materials recovery. In this context, more and more valorization methods and technologies are being developed for waste valorization, with biomass materials of municipal and agroindustrial origin constituting ideal options, due to both composition and availability.</p><p>Biochar generation from waste biomass is a method with high potential for effectively valorizing such residual resources, by providing not only a waste management option, but also multiple agronomic and environmental benefits. In fact, biochar materials are characterized by high versatility as far as their applications are concerned. Due to their wide variety of properties, biochars can be used in various applications, such the use as an adsorbent for contaminant removal from water or wastewater, or the use as an amendment for improving soil characteristics and remediating contaminated sites.</p><p>In the present study, six different waste biomass feedstocks, specifically three of municipal origin, namely two types of sewage sludge and the organic fraction of municipal solid waste, and three of agroindustrial origin, namely grape pomace, rice husks and exhausted olive pomace, were used to generate biochar through pyrolysis at two different temperatures, i.e. 400 and 600 °C. The resulting carbonaceous materials were then characterized through a series of analyses. Based on both physical and chemical biochar properties, it was able to evaluate their potential use in different applications, for agronomic or environmental purposes.</p>


2017 ◽  
Vol 38 (3) ◽  
pp. 445-454 ◽  
Author(s):  
Leszek Rudniak ◽  
Piotr M. Machniewski

Abstract A mathematical model of waste tyre pyrolysis process is developed in this work. Tyre material decomposition based on a simplified reaction mechanism leads to main product lumps: noncondensable (gas), condensable (pyrolytic oil) and solid (char). The model takes into account kinetics of heat and mass transfer in the grain of the shredded rubber material as well as surrounding gas phase. The main reaction routes were modelled as the pseudo-first order reactions with a rate constant calculated from the Arrhenius type equation using literature values of activation energy determined for main tyre constituents based on TG/DTG measurements and tuned pre-exponential parameter values obtained by fitting theoretical predictions to the experimental results obtained in our laboratory reactor. The model was implemented within the CFD software (ANSYS Fluent). The results of numerical simulation of the pyrolysis process revealed non-uniformity of sample’s porosity and temperature. The simulation predictions were in satisfactory agreement with the experimentally measured mass loss of the tyre sample during pyrolysis process investigated in a laboratory reactor.


2012 ◽  
Vol 730-732 ◽  
pp. 611-616 ◽  
Author(s):  
Alexandra Castro ◽  
Cândida Vilarinho ◽  
Delfim Soares ◽  
Fernando Castro

The presence of organic compounds on wastes, especially plastics, is considered an important source of energy. However, most of these plastics contain polyvinyl chloride (PVC), causing recycling problems when it is considered a thermal valorization process for its treatment [1], preventing the use of those residues on these processes, which main goal is the energy recovery [2,3]. A possible solution is to remove the chlorine from PVC containing waste through a pyrolysis process before being subjected to a thermal treatment, for energetic valorization. In this work, it was developed a kinetic model for the thermal decomposition of PVC, in view of its de-chlorination. DTA/TGA testing were performed at different temperatures (between the range of decomposition temperatures of the PVC molecule) indicated a first order reaction and an activation energy of 133800 J/mol, value very close to the one obtained in others works reported [4]. A factorial plan was carried out with different temperatures, performed in lab scale, in which best results were obtained at the temperature of 340 °C, proving the kinetic model obtained.


2013 ◽  
Vol 35 (1) ◽  
pp. 262-269 ◽  
Author(s):  
Silvana de Paula Quintão Scalon ◽  
Ayd Mary Oshiro ◽  
Tathiana Elisa Masetto ◽  
Daiane Mugnol Dresch

This article aims at evaluating the effects of different packaging and varied storage temperatures on the germination potential of seeds of Campomanesia adamantium Camb. O. Berg. The seeds were packaged in glass, aluminum foil and plastic containers, or maintained inside intact fruits at 5, 10 and 15 ºC during 0, 7, 14 and 21 days. After these periods the seeds were sown in Germitest® germination paper and maintained in incubation chambers at 25 ºC under constant white light for 42 days. Seed moisture contents were evaluated both before and after storage, as well as germination percentages, germination speed index, root and aerial portion of seedlings lengths, and total dry weights. All possible combinations of packing materials, temperatures and storage times were tested, with four repetitions of 25 seeds for each treatment. C. adamantium seeds showed initial water contents of 31.5%. Glass and aluminum packaging were efficient at maintaining the water content of the seeds, and provided greater germination speed index than the other packaging materials. Germination percentages, seedlings lengths and dry weights did not vary among the different temperatures tested. C. adamantium seeds can be stored for up to 21 days at temperatures between 5 and 15 ºC without altering their physiological quality. In terms of cost-benefit efficiencies, these seeds can be stored without significant damage for 21 days while still inside the fruits at temperatures of 5, 10 or 15 ºC.


2019 ◽  
Vol 13 (1) ◽  
pp. 4636-4647 ◽  
Author(s):  
N. I. Izzatie ◽  
M. H. Basha ◽  
Y. Uemura ◽  
M. S. M. Hashim ◽  
M. Afendi ◽  
...  

Co-pyrolysis of rubberwood sawdust (RWS) waste and polypropylene (PP) was carried out at different temperatures (450,500,550, and 600°C) with biomass to plastics ratio 1:1 by using fixed bed drop-type pyrolyzer. The yield of pyrolysis oil has an increasing trend as the temperature increased from 450°C to 550°C. However, the pyrolysis oil yield dropped at a temperature of 600°C. Co-pyrolysis of RWS and PP generated maximum pyrolysis oil with 36.47 wt.% at 550°C. The result is compared with the pyrolysis of RWS only without plastics, with the same feedstock, and the maximum pyrolysis oil yield obtained was 33.3 wt.%. The water content in pyrolysis oil of co-pyrolysis RWS with PP is lower than RWS only with 54.2 wt.% and 62 wt.% respectively. Hydrocarbons, acyclic olefin, alkyl, and aromatic groups are the major compound in the pyrolysis oil from the co-pyrolysis process. Carbon monoxide (52.2 vol.%) and carbon dioxide (38.2 vol.%) are the major gas components.


Sign in / Sign up

Export Citation Format

Share Document