The North Saskatchewan River Valley Landslide: Slope and Pipeline Condition Monitoring

Author(s):  
Chris Holliday ◽  
Andy Young ◽  
Terri Funk ◽  
Carrie Murray

Abstract Following a loss of containment incident in July 2016 on a 16-inch diameter pipeline on the south slope of the North Saskatchewan River located in Saskatchewan, Canada, Husky completed extensive studies to understand and learn from the failure. The cause of the incident was ground movement resulting from a landslide complex on the slope involving two deep-seated compound basal shear slides as well as a near surface translational slide in heavily over consolidated marine clays of the Upper Cretaceous Lea Park Formation. One aspect of the studies has been to undertake structural analysis of the pipeline response to the loading imposed from the ground movement to minimize the potential for a similar occurrence from happening in the future and determine the integrity of the pipeline at the time of the assessment. Given the scale and complexity of the landslide, slope stabilization measures were not practical to implement, so repeat ILI using caliper and inertial measurement technology (IMU), in addition to a robust monitoring program was implemented. Realtime monitoring of ground movements, pipe strain and precipitation levels provided a monitoring and early-warning system combined with documented risk thresholds that identified when to proactively shut-in the pipeline. The methodology and findings of the slope monitoring and structural analysis that was undertaken to examine the robustness of the pipeline to withstand future landslide movement are presented herein. The work involved modelling of the pipeline history on the slope including loads that had accumulated in the original pipeline sections based on historical ILI results and slope monitoring. The pipeline orientation was parallel with the ground movement in the landslide complex, so the development of axial strain in the pipeline was the dominant load component, which are particularly damaging in the compression zone. The work provided recommendations and technical basis to continue safe operation of the pipeline with consideration of continuing ground movement and assisted the operator with decisions over the long-term strategy for the pipeline.

2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


Author(s):  
Johannes Albert ◽  
Maximilian Schärf ◽  
Frieder Enzmann ◽  
Martin Waltl ◽  
Frank Sirocko

AbstractThis paper presents radon flux profiles from four regions in Schleswig–Holstein (Northern Germany). Three of these regions are located over deep-rooted tectonic faults or salt diapirs and one is in an area without any tectonic or halokinetic activity, but with steep topography. Contrary to recently published studies on spatial patterns of soil radon gas concentration we measured flux of radon from soil into the atmosphere. All radon devices of each profile were deployed simultaneously to avoid inconsistencies due to strong diurnal variations of radon exhalation. To compare data from different seasons, values had to be normalized. Observed radon flux patterns are apparently related to the mineralogical composition of the Quaternary strata (particularly to the abundance of reddish granite and porphyry), and its grain size (with a flux maximum in well-sorted sand/silt). Minimum radon flux occurs above non-permeable, clay-rich soil layers. Small amounts of water content in the pore space increase radon flux, whereas excessive water content lessens it. Peak flux values, however, are observed over a deep-rooted fault system on the eastern side of Lake Plön, i.e., at the boundary of the Eastholstein Platform and the Eastholstein Trough. Furthermore, high radon flux values are observed in two regions associated with salt diapirism and near-surface halokinetic faults. These regions show frequent local radon flux maxima, which indicate that the uppermost strata above salt diapirs are very inhomogeneous. Deep-rooted increased permeability (effective radon flux depth) or just the boundaries between permeable and impermeable strata appear to concentrate radon flux. In summary, our radon flux profiles are in accordance with the published evidence of low radon concentrations in the “normal” soils of Schleswig–Holstein. However, very high values of radon flux are likely to occur at distinct locations near salt diapirism at depth, boundaries between permeable and impermeable strata, and finally at the tectonically active flanks of the North German Basin.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohammad Heidarzadeh ◽  
Yuchen Wang ◽  
Kenji Satake ◽  
Iyan E. Mulia

AbstractWestern Mediterranean Basin (WMB) is among tsunamigenic zones with numerous historical records of tsunami damage and deaths. Most recently, a moderate tsunami on 21 May 2003 offshore Algeria, North Africa, was a fresh call for strengthening tsunami warning capabilities in this enclosed water basin. Here, we propose to deploy offshore bottom pressure gauges (OBPGs) and to adopt the framework of a tsunami data assimilation (TDA) approach for providing timely tsunami forecasts. We demonstrate the potential enhancement of the tsunami warning system through the case study of the 2003 Algeria tsunami. Four scenarios of OBPG arrangements involving 10, 5, 3 and 2 gauges are considered. The offshore gauges are located at distances of 120–300 km from the North African coast. The warning lead times are 20, 30, 48 and 55 min for four points of interest considered in this study: Ibiza, Palma, Sant Antoni and Barcelona, respectively. The forecast accuracies are in the range of 69–85% for the four OBPG scenarios revealing acceptable accuracies for tsunami warnings. We conclude that installation of OBPGs in the WMB can be helpful for providing successful and timely tsunami forecasts. We note that the OBPG scenarios proposed in this study are applicable only for the case of the 2003 Algeria tsunami. Further studies including sensitivity analyses (e.g., number of OBPG stations; earthquake magnitude, strike, epicenter) are required in order to determine OBPG arrangements that could be useful for various earthquake scenarios in the WMB.


2020 ◽  
Vol 14 (4) ◽  
pp. 405-412
Author(s):  
Endra Gunawan ◽  
Takuya Nishimura ◽  
Susilo Susilo ◽  
Sri Widiyantoro ◽  
Nanang T. Puspito ◽  
...  

AbstractOn 6 December 2016 at 22:03 UTC, a devastating magnitude 6-class strike-slip earthquake occurred along an unidentified and unmapped fault in Pidie Jaya, northern Sumatra. We analysed the possible fault using continuous Global Positioning System (GPS) observation available in the region. In our investigation, we searched for the fault source parameters of the north- and south-dipping left-lateral faults and the west- and east-dipping right-lateral faults. We identified that the fault responsible for the earthquake was located offshore, with a southwest-northeast direction. We also computed the Coulomb failure stress and compared the result with the distribution of the aftershocks. In this study, we demonstrated that the result of the geological field survey conducted soon after the mainshock was attributed to the secondary effects of ground shaking and near-surface deformation, and not surface faulting. The newly identified offshore fault proposed by this study calls for further investigation of the corresponding submarine morphological attributes in this particular region.


2020 ◽  
Vol 35 (S1) ◽  
pp. S38-S42
Author(s):  
Soraia Rodrigues de Azeredo ◽  
Roberto Cesareo ◽  
Angel Guillermo Bustamante Dominguez ◽  
Ricardo Tadeu Lopes

Precious ornaments from the Museum Royal Tombs of Sipán were analyzed by X-ray computed microtomography (microCT). The ornaments analyzed were golden earrings produced by the Moche culture that flourished along the north coast of present-day Peru between approximately 100 and 600 AD. Sipán, also known as Huava Rajada, is a mochica archaeological complex in the north of Peru. In particular, the spectacular jewelry, mainly composed of gold, silver, and copper alloys, gilded copper, and tumbaga, from the Museum “Royal Tombs of Sipán,” in Lambayeque, north of Peru, are some of the most sophisticated metalworking ever produced of pre-Columbian America. A portable microCT system consisting of a high-resolution flat panel detector and a mini X-ray tube were used for the structural analysis of these ornaments. The microCT images show parts of the internal structure, highlighting the manufacturing technique and gold sheets joining techniques of the Moche artisans. Furthermore, the advantage of using the portable microCT system for nondestructive testing is clear when the sample cannot be taken to the laboratory.


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2017 ◽  
Vol 30 (13) ◽  
pp. 4965-4981 ◽  
Author(s):  
James F. Booth ◽  
Young-Oh Kwon ◽  
Stanley Ko ◽  
R. Justin Small ◽  
Rym Msadek

To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence.


2021 ◽  
Vol 13 (13) ◽  
pp. 2534
Author(s):  
Andrea Ciampalini ◽  
Paolo Farina ◽  
Luca Lombardi ◽  
Massimiliano Nocentini ◽  
Veronica Taurino ◽  
...  

Slow to extremely slow landslides in urban areas may cause severe damage to buildings and infrastructure that can lead to the evacuation of local populations in case of slope accelerations. Monitoring the spatial and temporal evolution of this type of natural hazard represents a major concern for the public authorities in charge of risk management. Pariana, a village with 400 residents located in the Apuan Alps (Massa, Tuscany, Italy), is an example of urban settlement where the population has long been forced to live with considerable slope instability. In the last 30 years, due to the slope movements associated with a slow-moving landslide that has affected a significant portion of the built-up area, several buildings have been damaged, including a school and the provincial road crossing the unstable area, leading to the need for an installation of a slope monitoring system with early warning capabilities, in parallel with the implementation of mitigation works. In this paper, we show how satellite multi-temporal interferometric synthetic aperture radar (MT-InSAR) data can be effectively used when coupled with a wireless sensor network made of several bar extensometers and a borehole inclinometer. In fact, thanks to their wide area coverage and opportunistic nature, satellite InSAR data allow one to clearly identify the spatial distribution of surface movements and their long-term temporal evolution. On the other hand, geotechnical sensors installed on specific elements at risk (e.g., private buildings, retaining walls, etc.), and collected through Wi-Fi dataloggers, provide near real-time data that can be used to identify sudden accelerations in slope movements, subsequently triggering alarms. The integration of those two-monitoring systems has been tested and assessed in Pariana. Results show how a hybrid slope monitoring program based on the two different technologies can be used to effectively monitor slow-moving landslides and to identify sudden accelerations and activate a response plan.


1987 ◽  
Vol 24 (6) ◽  
pp. 1086-1097 ◽  
Author(s):  
Mel R. Stauffer ◽  
Don J. Gendzwill

Fractures in Late Cretaceous to Late Pleistocene sediments in Saskatchewan, eastern Montana, and western North Dakota form two vertical, orthogonal sets trending northeast–southwest and northwest–southeast. The pattern is consistent, regardless of rock type or age (except for concretionary sandstone). Both sets appear to be extensional in origin and are similar in character to joints in Alberta. Modem stream valleys also trend in the same two dominant directions and may be controlled by the underlying fractures.Elevation variations on the sub-Mannville (Early Cretaceous) unconformity form a rectilinear pattern also parallel to the fracture sets, suggesting that fracturing was initiated at least as early as Late Jurassic. It may have begun earlier, but there are insufficient data at present to extend the time of initiation.We interpret the fractures as the result of vertical uplift together with plate motion: the westward drift of North America. The northeast–southwest-directed maximum principal horizontal stress of the midcontinent stress field is generated by viscous drag effects between the North American plate and the mantle. Vertical uplift, erosion, or both together produce a horizontal tensile state in near-surface materials, and with the addition of a directed horizontal stress through plate motion, vertical tension cracks are generated parallel to that horizontal stress (northeast–southwest). Nearly instantaneous elastic rebound results in the production of second-order joints (northwest–southeast) perpendicular to the first. In this manner, the body of rock is being subjected with time to complex alternation of northeast–southwest and northwest–southeast horizontal stresses, resulting in the continuous and contemporaneous production of two perpendicular extensional joint sets.


2007 ◽  
Vol 44 (8) ◽  
pp. 1151-1168 ◽  
Author(s):  
Peter J Barnett

Many previously published studies of the behaviour of Pt and Pd in till and soils have been done in areas of complex stratigraphy or very thin overburden cover, making the interpretation of soil results difficult because of the many variables associated with these settings. At the Lac des Iles mine site in northwestern Ontario, there are excellent exposures of the overburden in a series of exploration trenches. Glacial dispersal trains can be observed in till (C horizon) geochemistry (e.g., Ni, Cr, Cu, and Co). Regional geochemical dispersal trains of elements, such as Ni, Cr, Mg, and Co associated with the North Lac des Iles intrusion, can be detected for about 4 km beyond the western margin of the Mine Block intrusion. Entire dispersal trains range from 5 to 7 km in length and about 1 to 2 km in width. The dispersal of North Lac des Iles intrusion rock fragments tends to mask the response of the Mine Block intrusion. Dispersal trains of Pt and Pd are not well defined and tend to be very short, <1 km in length, due to the initial low concentrations of these elements in C-horizon till samples from the Lac Des Iles area. An exception to this is the Pd dispersal train originating from the high-grade zone that is up to 3 km long. Pd, Pt, Ni, and Cu appear to be moving both within and out of the soil system downslope into surface and shallow groundwater. It is suggested that these elements, to varying degrees, are moving in solution. Airborne contamination from mine operations of the humus has adversely affected the ability to determine the effectiveness of humus sampling for mineral exploration at Lac des Iles. The airborne contamination likely influences the geochemical results from surface water, shallow groundwater, and near-surface organic bog samples, particularly for the elements Pd and Pt.


Sign in / Sign up

Export Citation Format

Share Document