Fickian Behavior and Concentration-Dependence of the Diffusion of Dextran in Agarose

Author(s):  
Michael B. Albro ◽  
Vikram Rajan ◽  
Clark T. Hung ◽  
Gerard A. Ateshian

Various studies have attempted to quantify the effects of loading on nutrient transport in cartilage and other soft tissues. The application of a dynamic mechanical stimulus has been shown to significantly enhance the mechanical properties of chondrocyte-seeded agarose [1]. While the mechanism for this enhancement is still not completely understood, dynamic loading has been shown theoretically [2] as well as experimentally [3] to increase the uptake of large molecules. Since dextran is available in a wide range of molecular weights and can be conjugated with fluorphores, it has become a popular model system for studying solute transport in statically loaded and free swelling gels and tissues [4, 5]. To better characterize this model system, this study uses fluorescence recovery after photobleaching (FRAP) to investigate the Fickian behavior of linear dextran macromolecules as well as the dependence of its diffusivity on concentration.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 40
Author(s):  
Aitor Tejo-Otero ◽  
Felip Fenollosa-Artés ◽  
Isabel Achaerandio ◽  
Sergi Rey-Vinolas ◽  
Irene Buj-Corral ◽  
...  

With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol –PVA–, Phytagel –PHY– and methacrylate gelatine –GelMA–) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues.


2018 ◽  
Vol 15 (4) ◽  
pp. 566-571 ◽  
Author(s):  
Araceli Martinez ◽  
Mikhail A. Tlenkopatchev ◽  
Selena Gutierrez

Background: Ring opening metathesis polymerization of lactones using alkylidene catalysts is an alternative to obtain unsaturated linear polyesters with remarkable thermal and mechanical properties. Also, these polyesters have properties of biodegradability which opens up a wide range of applications as environmentally friendly thermoplastics and biomaterials. Objective: This research aims to present one route to obtain an unsaturated linear polyester poly(ω-6- hexadecenlactone) via ring opening-metathesis polymerization of ω-6-hexadecenlactone using the rutheniumalkylidene [Ru(Cl)2(=CHPh)(PCy3)2] (I), [Ru(Cl2)(=CHPh)(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)( PCy3)] (II) and [Ru(Cl2)(=CH(o-isopropoxyphenylmethylene))(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)] (III) and the ruthenium-vinylidene [RuCl2(=C=CH(p-C6H4CF3))(PCy3)2] (IV) catalysts. Conclusion: The high number-average molecular weights of the poly(ω-6-hexadecenlactone) between Mn = 114,800-155,400 g/mol and yields ranging from 96 to 98 % can be achieved by II and III catalysts. The catalysts II and III with the N-heterocyclic carbene ligand showed superior activity and stability upon catalysts I and IV bearing PCy3 ligands. The hydrogenation of poly(ω-6-hexadecenlactone) using Wilkinson catalyst [RhCl(PPh3)3] was studied. The percent crystallinity of the unsaturated poly(ω-6-hexadecenlactone) was 31% with a melting temperature 47.60ºC. Stress-strain measurements of several poly(ω-6-hexadecenlactone) were determined.


Author(s):  
Nadeen O. Chahine ◽  
Eric G. Lima ◽  
Clark T. Hung ◽  
Gerard A. Ateshian

The poor intrinsic healing capacity of articular cartilage has led to a number of attempts to engineer a replacement tissue [1]. One of these approaches, termed functional tissue engineering, suggests that the application of mechanical preconditioning, mimicking the in vivo loading environment, may enhance the development of material properties in these constructs [2,3]. Using this approach, our previous studies have demonstrated that dynamic loading (DL) increases the mechanical properties of chondrocyte-seeded agarose hydrogels relative to free swelling (FS) controls [4–6]. One mechanism by which the increase in mechanical properties occurs is hypothesized to be due to enhanced transport of nutrients and/or growth factors under dynamic loading [7]. The goal of the current study is to determine the effect of dynamic loading on the transport of neutral dextran molecules into agarose gels. Dextran, a neutral and generally inert solute commonly used in diffusion and transport studies, is used in its fluorophore-conjugated form thus making it possible to track the solute and quantify its content inside a hydrogel. We hypothesize that the uptake of dextran molecules into the agarose gels will be significantly enhanced under the influence of physiological dynamic deformation loading. Two varying molecular weights of dextran, 3 kDa and 70 kDa, were chosen in this study to ascertain a wide range of transport behaviors, and to interpret the experimental results in the context of a recently developed mixture theory model for the transport of neutral solutes in a neutrally charged gel, such as agarose [8].


2009 ◽  
Vol 45 (3) ◽  
pp. 242-247 ◽  
Author(s):  
Massimo Zimbone ◽  
Pietro Baeri ◽  
Maria Luisa Barcellona ◽  
Giovanni Li Volti ◽  
Gabriele Bonaventura ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3116
Author(s):  
Giulio Benetti ◽  
Francesco Banfi ◽  
Emanuele Cavaliere ◽  
Luca Gavioli

Nanoporous ultrathin films, constituted by a slab less than 100 nm thick and a certain void volume fraction provided by nanopores, are emerging as a new class of systems with a wide range of possible applications, including electrochemistry, energy storage, gas sensing and supercapacitors. The film porosity and morphology strongly affect nanoporous films mechanical properties, the knowledge of which is fundamental for designing films for specific applications. To unveil the relationships among the morphology, structure and mechanical response, a comprehensive and non-destructive investigation of a model system was sought. In this review, we examined the paradigmatic case of a nanoporous, granular, metallic ultrathin film with comprehensive bottom-up and top-down approaches, both experimentals and theoreticals. The granular film was made of Ag nanoparticles deposited by gas-phase synthesis, thus providing a solvent-free and ultrapure nanoporous system at room temperature. The results, bearing generality beyond the specific model system, are discussed for several applications specific to the morphological and mechanical properties of the investigated films, including bendable electronics, membrane separation and nanofluidic sensing.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


Sign in / Sign up

Export Citation Format

Share Document