New flow behavior of gases and vapors in vacuum at very low flow rates

1993 ◽  
Vol 11 (1) ◽  
pp. 245-254 ◽  
Author(s):  
N. Venkataramani ◽  
F. Ghezzi ◽  
G. Bonizzoni
Keyword(s):  
Low Flow ◽  
Author(s):  
Xiongjun Wu ◽  
Greg Loraine ◽  
Chao-Tsung Hsiao ◽  
Georges L. Chahine

The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper discusses a phase separator that is capable of efficiently and reliably separating gas-liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to reduced and zero gravity environments. The phase separator consists of two concentric cylindrical chambers. The fluid introduced in the space between the two cylinders enters the inner cylinder through tangential slots and generates a high intensity swirling flow. The geometric configuration is selected to make the vortex swirl intense enough to lead to early cavitation which forms a cylindrical vaporous core at the axis even at low flow rates. Taking advantage of swirl and cavitation, the phase separator can force gas out of the liquid into the central core of the vortex even at low void fraction. Gas is extracted from one end of the cylinder axial region and liquid is extracted from the other end. The phase separator has successfully demonstrated its capability to reduce mixture void fractions down to 10−8 and to accommodate incoming mixture gas volume fractions as high as 35% in both earth and reduced gravity flight tests. The phase separator is on track to be tested by NASA on the International Space Station (ISS). Additionally, the phase separator design exhibits excellent scalability. Phase separators of different dimensions, with inlet liquid flow rates that range from a couple of GPMs to a few tens of GPMs, have been built and tested successfully in the presence and absence of the gravity. Extensive ground experiments have been conducted to study the effects of main design parameters on the performance of the phase separator, such as the length and diameter of the inner cylinder; the size, location, and layout of injection slots and exit orifices, etc., on the swirling flow behavior, and on the gas extraction performance. In parallel, numerical simulations, utilizing a two-phase Navier-Stokes flow solver coupled with bubble dynamics, have been conducted extensively to facilitate the development of the phase separator. These simulations have enabled us to better understand the physics behind the phase separation and provided guideline for system parts optimization. This paper describes our efforts in developing the passive phase separator for both space and ground applications.


Author(s):  
Hamidou Benzenine ◽  
Said Abboudi ◽  
Rachid Saim

In this paper, a two-dimensional numerical study of heat exchange by forced convection of an incompressible laminar flow in a solar air heater duct (SAH), which is equipped with a shoulder attached to the absorber, was performed. The impact of three locations of this shoulder and their three heights on friction losses, as well as the drag coefficient, the variations of velocity, and temperature at the exit section of the SAH, were analyzed for a volume flow rate in the range [20-80 m3/h.]. The results obtained numerically prove that the insertion of a shoulder on the absorber improves the heat transfer and the dynamics of the flow very significantly. An average temperature difference (inlet-outlet) of the collector of 23.51 °C at 29.94 °C and 50.64 °C at 67.53 °C is acquired respectively for the high and the low flow rates. This paper also showed that the height of the shoulder used can ensure an acceleration of the flow with an axial variation of the order of 1.25 up to 2.5 times (> twice) compared with the simple case.


ORL ◽  
2021 ◽  
pp. 1-5
Author(s):  
Jingjing Liu ◽  
Tengfang Chen ◽  
Zhenggang Lv ◽  
Dezhong Wu

<b><i>Introduction:</i></b> In China, nasal cannula oxygen therapy is typically humidified. However, it is difficult to decide whether to suspend nasal cannula oxygen inhalation after the nosebleed has temporarily stopped. Therefore, we conducted a preliminary investigation on whether the use of humidified nasal cannulas in our hospital increases the incidence of epistaxis. <b><i>Methods:</i></b> We conducted a survey of 176,058 inpatients in our hospital and other city branches of our hospital over the past 3 years and obtained information concerning their use of humidified nasal cannulas for oxygen inhalation, nonhumidified nasal cannulas, anticoagulant and antiplatelet drugs, and oxygen inhalation flow rates. This information was compared with the data collected at consultation for epistaxis during these 3 years. <b><i>Results:</i></b> No significant difference was found between inpatients with humidified nasal cannulas and those without nasal cannula oxygen therapy in the incidence of consultations due to epistaxis (χ<sup>2</sup> = 1.007, <i>p</i> &#x3e; 0.05). The same trend was observed among hospitalized patients using anticoagulant and antiplatelet drugs (χ<sup>2</sup> = 2.082, <i>p</i> &#x3e; 0.05). Among the patients with an inhaled oxygen flow rate ≥5 L/min, the incidence of ear-nose-throat (ENT) consultations due to epistaxis was 0. No statistically significant difference was found between inpatients with a humidified oxygen inhalation flow rate &#x3c;5 L/min and those without nasal cannula oxygen therapy in the incidence of ENT consultations due to epistaxis (χ<sup>2</sup> = 0.838, <i>p</i> &#x3e; 0.05). A statistically significant difference was observed in the incidence of ENT consultations due to epistaxis between the low-flow nonhumidified nasal cannula and nonnasal cannula oxygen inhalation groups (χ<sup>2</sup> = 18.428, <i>p</i> &#x3c; 0.001). The same trend was observed between the 2 groups of low-flow humidified and low-flow nonhumidified nasal cannula oxygen inhalation (χ<sup>2</sup> = 26.194, <i>p</i> &#x3c; 0.001). <b><i>Discussion/Conclusion:</i></b> Neither high-flow humidified nasal cannula oxygen inhalation nor low-flow humidified nasal cannula oxygen inhalation will increase the incidence of recurrent or serious epistaxis complications; the same trend was observed for patients who use anticoagulant and antiplatelet drugs. Humidification during low-flow nasal cannula oxygen inhalation can prevent severe and repeated epistaxis to a certain extent.


Author(s):  
Yo Han Jung ◽  
Young Uk Min ◽  
Jin Young Kim

This paper presents a numerical investigation of the effect of tip clearance on the suction performance and flow characteristics at different flow rates in a vertical mixed-flow pump. Numerical analyses were carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations. Steady computations were performed for three different tip clearances under noncavitating and cavitating conditions at design and off-design conditions. The pump performance test was performed for the mixed-flow pump and numerical results were validated by comparing the experimental data for a system characterized by the original tip clearance. It was shown that for large tip clearance, the head breakdown occurred earlier at the design and high flow rates. However, the head breakdown was quite delayed at low flow rate. This resulted from the cavitation structure caused by the tip leakage flow at different flow rates.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


2021 ◽  
pp. 1-54
Author(s):  
Subhra Shankha Koley ◽  
Huang Chen ◽  
Ayush Saraswat ◽  
Joseph Katz

Abstract This experimental study characterizes the interactions of axial casing grooves with the flow in the tip region of an axial turbomachine. The tests involve grooves with the same inlet overlapping with the rotor blade leading edge, but with different exit directions located upstream. Among them, U grooves, whose circumferential outflow opposes the blade motion, achieve a 60% reduction in stall flowrate, but degrade the efficiency around the best efficiency point (BEP) by 2%. The S grooves, whose outlets are parallel to the blade rotation, improve the stall flowrate by only 36%, but do not degrade the BEP performance. To elucidate the mechanisms involved, stereo-PIV measurements covering the tip region and interior of grooves are performed in a refractive index matched facility. At low flow rates, the inflow into both grooves, which peaks when they are aligned with the blade pressure side, rolls up into a large vortex that lingers within the groove. By design, the outflow from S grooves is circumferentially positive. For the U grooves, fast circumferentially negative outflow peaks at the base of each groove, causing substantial periodic variations in the flow angle near the blade leading edge. At BEP, interactions with both grooves become milder, and most of the tip leakage vortex remains in the passage. Interactions with the S grooves are limited hence they do not degrade the efficiency. In contrast, the inflow into and outflow from the U grooves reverses direction, causing entrainment of secondary flows, which likely contribute to the reduced BEP efficiency.


Author(s):  
Shyam P. Tekade ◽  
Diwakar Z. Shende ◽  
Kailas L. Wasewar

Abstract Hydrogen is one of the important non-conventional energy sources because of its high energy content and non-polluting nature of combustions. The water splitting reaction is one of the significant methods for hydrogen generation from non-fossil feeds. In the present paper, the hydrogen generation has been experimentally investigated with water splitting reaction using metal aluminum in presence of potassium hydroxide as an activator under flow conditions. The rate of hydrogen generation was reported in the annular micro- reactor of 1 mm annulus using various flow rates of aqueous 0.5 N KOH ranging from 1 ml/min to 10 ml/min. The complete conversion of aluminum was observed at all the flow rates of aqueous KOH. The hydrogen generation rate was observed to depend on the flow rate of liquid reactant flowing through the reactor. At 1 ml/min of 0.5 N KOH, hydrogen generates at an average rate of 3.36 ml/min which increases to 10.70 ml/min at 10 ml/min of aqueous KOH. The Shrinking Core Model was modified for predicting the controlling mechanism. The rate of hydrogen generation was observed to follow different controlling mechanisms on various time intervals at low flow rates of aqueous KOH. It was observed that chemical reaction controls the overall rate of hydrogen generation at higher flow rates of aqueous KOH.


1983 ◽  
Vol 26 ◽  
Author(s):  
Aaron Barkatt ◽  
William Sousanpour ◽  
Alisa Barkatt ◽  
Morad A. Boroomand ◽  
Pedro B. Macedo

ABSTRACTLeach tests carried out on SRL TDS-131 Defense Waste Class indicate that at high flow rates the controlling mechanism is simple corrosion. The matrix elements (Si, Al) are leached out at rates similar to those of the leaching of the alkalis and of boron, and the leaching process is nearly linear with time. At slow flow rates (below 1 m/yr) leaching becomes controlled by the build-up of a protective layer. Al and most of the Si remain in the leached surface layer. The leach rates decrease in the course of the test before leveling off at constant values which are almost inversely proportional to the contact time, indicating that leachate concentrations have become solubility-limited. The low concentrations observed at this stage indicate the formation of alteration products.


Author(s):  
A. S. Shtanko ◽  
◽  
V. N. Shkura ◽  

Purpose: development of layout and design schemes for low-flow water intakes, arranged on shallow river and stream watercourses for supplying water to drip irrigation systems. Agricultural development of terraces and floodplains of small foothill and mountain streams actualizes the development of facilities for water intake from them for the purpose of irrigating land. Morphological and hydrographic features, including shallow low-water depths, high flow rates, flow rates variability, saturation with sediments, the presence of underflow and overflow runoff, etc., make water intake from such watercourses difficult and specific. These circumstances predetermine the relevance of water intake structures development corresponding to the specified conditions. Materials and Methods. When developing the layout and design schemes of low-flow water intakes from shallow watercourses, the technologies of exploratory design of engineering systems and structures were used. Results. With regard to the morphometric, hydrological and other conditions of shallow foothill and mountain streams, a water intake with a bottom water intake was adopted for development. The water intake part of headworks is designed in the form of a toe drain, which has under-flow and overflow intake parts that allow water intake from the channel and off-channel water streams. The toe is made of two or three layers of sand and gravel material. Drainage pipes or pipe filters are used as a drainage element. Depending on the conditions of the watercourse, water intakes with transverse, longitudinal and pocket-coastal placement of water intakes are proposed. Conclusion. The layout and design schemes of filtering water intakes from shallow watercourses based on the use of overflow, underflow and combined structures of multilayer drainage water intakes with stream (transverse and longitudinal) and off-channel (pocket-coastal) placement have been proposed and developed.


Sign in / Sign up

Export Citation Format

Share Document