scholarly journals Experimental Guidelines for Studies Designed to Investigate the Impact of Antioxidant Supplementation on Exercise Performance

Author(s):  
Scott K. Powers ◽  
Ashley J. Smuder ◽  
Andreas N. Kavazis ◽  
Matthew B. Hudson

Research interest in the effects of antioxidants on exercise-induced oxidative stress and human performance continues to grow as new scientists enter this field. Consequently, there is a need to establish an acceptable set of criteria for monitoring antioxidant capacity and oxidative damage in tissues. Numerous reports have described a wide range of assays to detect both antioxidant capacity and oxidative damage to biomolecules, but many techniques are not appropriate in all experimental conditions. Here, the authors present guidelines for selecting and interpreting methods that can be used by scientists to investigate the impact of antioxidants on both exercise performance and the redox status of tissues. Moreover, these guidelines will be useful for reviewers who are assigned the task of evaluating studies on this topic. The set of guidelines contained in this report is not designed to be a strict set of rules, because often the appropriate procedures depend on the question being addressed and the experimental model. Furthermore, because no individual assay is guaranteed to be the most appropriate in every experimental situation, the authors strongly recommend using multiple assays to verify a change in biomarkers of oxidative stress or redox balance.

2011 ◽  
Vol 107 (8) ◽  
pp. 1112-1118 ◽  
Author(s):  
Pei-Hsuan Tsai ◽  
Jun-Jen Liu ◽  
Chui-Li Yeh ◽  
Wan-Chun Chiu ◽  
Sung-Ling Yeh

There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25 % of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.


2017 ◽  
Vol 12 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Mica R. Endsley

The concept of different levels of automation (LOAs) has been pervasive in the automation literature since its introduction by Sheridan and Verplanck. LOA taxonomies have been very useful in guiding understanding of how automation affects human cognition and performance, with several practical and theoretical benefits. Over the past several decades a wide body of research has been conducted on the impact of various LOAs on human performance, workload, and situation awareness (SA). LOA has a significant effect on operator SA and level of engagement that helps to ameliorate out-of-the-loop performance problems. Together with other aspects of system design, including adaptive automation, granularity of control, and automation interface design, LOA is a fundamental design characteristic that determines the ability of operators to provide effective oversight and interaction with system autonomy. LOA research provides a solid foundation for guiding the creation of effective human–automation interaction, which is critical for the wide range of autonomous and semiautonomous systems currently being developed across many industries.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Drahomira Holmannova ◽  
Lenka Borska ◽  
Ctirad Andrys ◽  
Pavel Borsky ◽  
Jan Kremlacek ◽  
...  

Background. Psoriasis is a chronic systemic inflammatory disease associated with a wide range of comorbidities, including metabolic syndrome (MetS). Serum calprotectin, ANGPTL8, and oxidative damage to nucleic acids might be associated with both diseases. The presented study describes the influence of psoriasis and MetS on the serum levels of markers of systemic inflammation (calprotectin and ANGPTL8) and markers of oxidative damage to nucleic acids. The applicability of serum levels of calprotectin and ANGPTL8 for monitoring of the activity of psoriasis (diagnostic markers) is also evaluated. Methods. Clinical examination (PASI score, MetS), enzyme-linked immunosorbent assay (ELISA), and Enzyme Immunoassay (EIA). Serum calprotectin, ANGPTL8, 8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine. Results and Conclusions. The psoriasis significantly increased the serum level of calprotectin and the serum level of oxidative damage to nucleic acids, however not the serum level of ANGPTL8. The presence of MetS did not significantly affect the serum levels of calprotectin, ANGPTL8, and oxidative damage to nucleic acids in either psoriasis patients or controls. It seems that the serum level of calprotectin (but not the serum level of ANGPTL8) could be used as a biomarker for monitoring the activity of psoriasis.


Author(s):  
Lubica Argalasova ◽  
Ingrid Zitnanova ◽  
Diana Vondrova ◽  
Monika Dvorakova ◽  
Lucia Laubertova ◽  
...  

Background: Exposure to ETS (environmental tobacco smoke) is one of the most toxic environmental exposures. Objective: To investigate the association of ETS with physiological, biochemical, and psychological indicators, as well as with urine antioxidant capacity (AC) and oxidative damage to lipids in a pilot sample of healthy pregnant women. Methods: Exposure to ETS was investigated via a validated questionnaire, and urine cotinine and the marker of oxidative damage to lipids via 8-isoprostane concentrations using an ELISA kit. Urine AC was determined by the spectrophotometric Trolox-equivalent antioxidant capacity (TEAC) method. From a sample of pregnant women (n = 319, average age 30.84 ± 5.09 years) in 80, the levels of cotinine and oxidative stress markers were analyzed. Results: Among the 80 pregnant women, 5% (7.4% confirmed by cotinine) reported being current smokers and 25% reported passive smoking in the household (18.8% confirmed by cotinine). The Kappa was 0.78 for smokers and 0.22 for ETS-exposed nonsmokers. Pregnant women in the ETS-exposed group had significantly reduced AC compared to both the nonsmoker (ETS−) and the smoker groups (p < 0.05). Nonsmokers had significantly lower levels of 8-isoprostane than smokers (p < 0.01) and ETS-exposed nonsmokers (p < 0.05). Correlations between urine levels of cotinine and AC were positive in ETS-exposed nonsmokers. Conclusion: A harmful association of active and passive smoking and oxidative stress parameters among pregnant women has been indicated.


2019 ◽  
Vol 20 (7) ◽  
pp. 1547 ◽  
Author(s):  
Ewa Żebrowska ◽  
Mateusz Maciejczyk ◽  
Małgorzata Żendzian-Piotrowska ◽  
Anna Zalewska ◽  
Adrian Chabowski

This is the first study to analyze the impact of high protein diet (HPD) on antioxidant defense, redox status, as well as oxidative damage on both a local and systemic level. Male Wistar rats were divided into two equal groups (n = 9): HPD (44% protein) and standard diet (CON; 24.2% protein). After eight weeks, glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase-1 (SOD-1), reduced glutathione (GSH), uric acid (UA), total antioxidant (TAC)/oxidant status (TOS) as well as advanced glycation end products (AGE), 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) were analyzed in the serum/plasma, cerebral cortex, and hypothalamus of HPD and CON rats. HPD resulted in higher UA concentration and activity of GPx and CAT in the hypothalamus, whereas in the cerebral cortex these parameters remained unchanged. A significantly lower GSH content was demonstrated in the plasma and hypothalamus of HPD rats when compared to CON rats. Both brain structures expressed higher content of 4-HNE and MDA, whereas AGE was increased only in the hypothalamus of HPD animals. Despite the enhancement in antioxidant defense in the hypothalamus, this mechanism does not protect the hypothalamus from oxidative damage in rats. Hypothalamus is more susceptible to oxidative stress caused by HPD.


2015 ◽  
Vol 308 (4) ◽  
pp. H291-H302 ◽  
Author(s):  
Niraj M. Bhatt ◽  
Miguel A. Aon ◽  
Carlo G. Tocchetti ◽  
Xiaoxu Shen ◽  
Swati Dey ◽  
...  

Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1819-1819
Author(s):  
Nathan G. Dolloff ◽  
Leticia Reyes ◽  
Brittany Smith ◽  
John Fairbanks Langenheim ◽  
Yefim Manevich

Abstract Proteasome inhibitors (PIs) like bortezomib (Btz) and carfilzomib (Crflz) induce an oxidative stress response in Multiple Myeloma (MM) cells. Oxidative stress is a key effector pathway in PI-induced cell death, and altered redox signaling has been implicated in the acquisition of PI resistance. The potential of redox as a therapeutic target/pathway for PI resistant MM has not been realized due to the absence of a precise molecular targeted strategy that exploits redox signaling in a way that attacks PI resistant cells while sparing normal cells. Therefore, we set out in this study to characterize redox adaptations that contribute to PI resistance in MM, and to use drug screening platforms to identify specific redox-targeted small molecules that restore PI sensitivity. Using multiple isogenic pairs of PI sensitive and resistant MM cell lines, we found that resistant cells exist under high basal levels of reactive oxygen species (ROS) and oxidation of protein thiols (i.e., oxidative damage). Resistant cells induce significantly higher relative levels of ROS following PI treatment, but exhibit no further increase in oxidative damage. By comparison, their PI sensitive counterparts have relatively low levels of basal and PI-induced ROS levels, but undergo significantly higher levels of oxidative damage following PI treatment. These findings demonstrate that PI resistance is associated with alterations in redox balance; they further suggest that PI resistant cells have acquired adaptations that allow them to survive under high basal levels of oxidative stress, and that provide protection from PI-induced oxidative damage. We also identified significant changes in cellular bioenergetics that are typical of PI resistant cells. Generally, PI resistant cells appear to be more metabolically efficient, relying on mitochondrial respiration as their primary source of ATP production. Specifically, PI resistant cells have higher basal oxygen consumption rates (OCR), expanded respiratory capacity, increased NAD(P)H levels and pyruvate dehydrogenase (PDH) activity, and nearly absent activation of the AMP kinase energy stress signaling pathway. Thus, the acquisition of PI resistance is associated with significant changes in redox balance as well as in cellular bioenergetics. Given these findings, we next used a cell-based drug screening method to screen for redox-targeted small molecules capable of restoring PI sensitivity to resistant cells. We screened a compound collection of known pro- and anti-oxidant small molecules with wide-ranging mechanisms of action. From this screen we identified compound E61, which demonstrated strong synergy with multiple PIs, including Btz, Crflz, ixazomib, and oprozomib. E61 induced an oxidative stress response characterized by a burst of ROS generation and oxidation of protein thiols, and synergistically enhanced the PI-induced oxidative stress response in resistant cells. The synergistic cytotoxic response to E61 and PI co-treatment was dependent on ROS, and was evident across several models of PI resistance, representing cells of diverse genetic backgrounds. While E61 enhanced PI-induced cell death in resistant MM cells, its effects were protective in normal cell types, including peripheral blood mononuclear cells (PMBCs) and lymphocytes from normal human donors. These findings suggest that compound E61 will have a wide therapeutic index in combination with PI therapy in preclinical mouse models of MM, a hypothesis that we are currently testing. All together, our findings identify specific redox and bioenergetics changes that are acquired by PI resistant MM cells. Furthermore, our work offers a novel redox-targeted small molecule, E61, to be used in combination with PI-based therapeutic regimens in refractory MM. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Francesco Angelini ◽  
Francesca Pagano ◽  
Antonella Bordin ◽  
Marika Milan ◽  
Isotta Chimenti ◽  
...  

Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human’s current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject’s profile will be discussed.


2021 ◽  
Author(s):  
Shi-Wei Li ◽  
Ming-Hui Chang ◽  
Wen-Jun Zhao ◽  
He-Lian Li ◽  
Hong-Jie Sun ◽  
...  

Abstract 2,6-dichlorobenzoquinone (2,6-DCBQ) is an emerging disinfection byproduct frequently detected in drinking water. Previous studies have indicated that 2,6-DCBQ causes oxidative stress damage in some live systems, but this has yet to be tested in vivo in mammals. In the present study, adult mice were exposed to 2,6-DCBQ for 30 d via gavage at 0 ~ 100 mg kg− 1 with the responses of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT]), key oxidative stress response genes (Heme oxygenase-1 [HO-1], NADPH quinone oxidoreductase 1 [NQO1] and glutamate-L-cysteine ligase catalytic subunit [GCLC]) in the Nrf2-keap1 pathway, and lipid peroxidation (malonaldehyde, MDA) as an indicator of oxidative damage being measured. Our results indicated that 2,6-DCBQ decreased the activities of SOD and CAT, repressed transcription of key genes in the Nrf2-keap1 pathway, and caused measurable oxidative damage. These results reveal the impact of 2,6-DCBQ in a model mammalian system and are key to understanding the potential impacts of 2,6-DCBQ in humans.


Sign in / Sign up

Export Citation Format

Share Document