scholarly journals Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts

Science ◽  
2021 ◽  
Vol 371 (6532) ◽  
pp. eabc1944 ◽  
Author(s):  
Jeffrey J. Quinn ◽  
Matthew G. Jones ◽  
Ross A. Okimoto ◽  
Shigeki Nanjo ◽  
Michelle M. Chan ◽  
...  

Detailed phylogenies of tumor populations can recount the history and chronology of critical events during cancer progression, such as metastatic dissemination. We applied a Cas9-based, single-cell lineage tracer to study the rates, routes, and drivers of metastasis in a lung cancer xenograft mouse model. We report deeply resolved phylogenies for tens of thousands of cancer cells traced over months of growth and dissemination. This revealed stark heterogeneity in metastatic capacity, arising from preexisting and heritable differences in gene expression. We demonstrate that these identified genes can drive invasiveness and uncovered an unanticipated suppressive role for KRT17. We also show that metastases disseminated via multidirectional tissue routes and complex seeding topologies. Overall, we demonstrate the power of tracing cancer progression at subclonal resolution and vast scale.

Author(s):  
Jeffrey J. Quinn ◽  
Matthew G. Jones ◽  
Ross A. Okimoto ◽  
Shigeki Nanjo ◽  
Michelle M. Chan ◽  
...  

AbstractCancer progression is characterized by rare, transient events which are nonetheless highly consequential to disease etiology and mortality. Detailed cell phylogenies can recount the history and chronology of these critical events – including metastatic seeding. Here, we applied our Cas9-based lineage tracer to study the subclonal dynamics of metastasis in a lung cancer xenograft mouse model, revealing the underlying rates, routes, and drivers of metastasis. We report deeply resolved phylogenies for tens of thousands of metastatically disseminated cancer cells. We observe surprisingly diverse metastatic phenotypes, ranging from metastasis-incompetent to aggressive populations. These phenotypic distinctions result from pre-existing, heritable, and characteristic differences in gene expression, and we demonstrate that these differentially expressed genes can drive invasiveness. Furthermore, metastases transit via diverse, multidirectional tissue routes and seeding topologies. Our work demonstrates the power of tracing cancer progression at unprecedented resolution and scale.One Sentence SummarySingle-cell lineage tracing and RNA-seq capture diverse metastatic behaviors and drivers in lung cancer xenografts in mice.


2019 ◽  
Vol 9 (12) ◽  
pp. 1644-1652
Author(s):  
Xueqin Pan ◽  
Dongchun Ma

Lung cancer is one of the most common malignant cancers with a poor survival rate and high mortality worldwide. MiRNAs have been evaluated as crucial regulators of human gene expression, and exerted vital role involved in cancer progression. MiR-302a-3p was aberrant expressed in cancers that include pancreatic cancer and hepatocellular cancer, but its biological role in lung cancer remains elusive. This study aimed to discover the role and potential mechanism of miR-302a-3p in lung cancer. The lung cancer cell line with the highest expression of miR-302a-3p was selected, which was then subjected to transfection of miR-302a-3p mimic. Quantitative RT-PCR was performed to detect gene expression. Western blot assay was performed to determine corresponding genes that related to cell proliferation, apoptosis and invasion. Cell Counting Kit (CCK)-8 assay, flow cytometry analysis, wound healing and Transwell assay were performed to detect cell proliferation, apoptosis, migration and invasion, respectively. Luciferase reporter assay was carried out to identify the targeting relationship of miR-302-3p and HOXA-AS2. MiR-302a-3p was downregulated in lung cancer cells, and overexpression of miR-302a-3p significantly suppressed cell proliferation, migration, invasion and promoted cell apoptosis. HOXA-AS2 was a direct target of miR-302a-3p and was regulated by miR-302a-3p. HOXA-AS2 was upregulated in lung cancer cells. Upregulated HOXA-AS2 could reverse the effect that overexpression of miR-302a-3p caused on cell proliferation, apoptosis, migration and invasion. Overall, miR-302a-3p exhibited anti-oncogenic activity by inhibiting cell proliferation, migration and invasion, and promoting cell apoptosis in lung cancer by targeting HOXA-AS2, disclosing the role and regulatory mechanism of miR-302a-3p, which provided a promising therapeutic target for the clinical application of lung cancer treatment.


2020 ◽  
Vol 21 (15) ◽  
pp. 5425
Author(s):  
Ti-Hui Wu ◽  
Shan-Yueh Chang ◽  
Yu-Lueng Shih ◽  
Chih-Feng Chian ◽  
Hung Chang ◽  
...  

Epigenetic modification is considered a major mechanism of the inactivation of tumor suppressor genes that finally contributes to carcinogenesis. LIM homeobox transcription factor 1α (LMX1A) is one of the LIM-homeobox-containing genes that is a critical regulator of growth and differentiation. Recently, LMX1A was shown to be hypermethylated and functioned as a tumor suppressor in cervical cancer, ovarian cancer, and gastric cancer. However, its role in lung cancer has not yet been clarified. In this study, we used public databases, methylation-specific PCR (MSP), reverse transcription PCR (RT-PCR), and bisulfite genomic sequencing to show that LMX1A was downregulated or silenced due to promoter hypermethylation in lung cancers. Treatment of lung cancer cells with the demethylating agent 5-aza-2’-deoxycytidine restored LMX1A expression. In the lung cancer cell lines H23 and H1299, overexpression of LMX1A did not affect cell proliferation but suppressed colony formation and invasion. These suppressive effects were reversed after inhibition of LMX1A expression in an inducible expression system in H23 cells. The quantitative RT-PCR (qRT-PCR) data showed that LMX1A could modulate epithelial mesenchymal transition (EMT) through E-cadherin (CDH1) and fibronectin (FN1). NanoString gene expression analysis revealed that all aberrantly expressed genes were associated with processes related to cancer progression, including angiogenesis, extracellular matrix (ECM) remodeling, EMT, cancer metastasis, and hypoxia-related gene expression. Taken together, these data demonstrated that LMX1A is inactivated through promoter hypermethylation and functions as a tumor suppressor. Furthermore, LMX1A inhibits non-small cell lung cancer (NSCLC) cell invasion partly through modulation of EMT, angiogenesis, and ECM remodeling.


2005 ◽  
Vol 23 (5) ◽  
pp. 953-964 ◽  
Author(s):  
Jeremy J.W. Chen ◽  
Yi-Chen Lin ◽  
Pei-Li Yao ◽  
Ang Yuan ◽  
Hsang-Yu Chen ◽  
...  

Purpose Inflammation plays a critical role in cancer progression. In this study we investigate the pro-tumorigenic activities and gene expression profiles of lung cancer cells after interaction with macrophages. Materials and Methods We measured intratumoral microvessel counts and macrophage density in 41 lung cancer tumor specimens and correlated these with the patients' clinical outcome. The interaction between macrophages and cancer cell lines was assessed using a transwell coculture system. The invasive potential was evaluated by in vitro invasion assay. The matrix-degrading activity was assayed by gelatin zymography. The microarray was applied to a large-scale analysis of the genes involved in the interaction, as well as to monitor the gene expression profiles of lung cancer cells responding to anti-inflammatory drugs in cocultures. Results The macrophage density positively correlated with microvessel counts and negatively correlated with patient relapse-free survival (P < .05). After coculture with macrophages, lung cancer cell lines exhibited higher invasive potentials and matrix-degrading activities. We identified 50 genes by microarray that were upregulated more than two-fold in cancer cells after coculture. Northern blot analyses confirmed some gene expression such as interleukin-6, interleukin-8, and matrix metalloproteinase 9. The two-dimensional hierarchical clustering also demonstrated that the gene expression profiles of lung cancer cells responding to various anti-inflammatory drugs in cocultures are distinct. Conclusion The interaction of lung cancer cells and macrophages can promote the invasiveness and matrix-degrading activity of cancer cells. Our results also suggest that a great diversity of gene expression occurs in this interaction, which may assist us in understanding the process of cancer metastasis.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 163
Author(s):  
Kristell Le Gal ◽  
Clotilde Wiel ◽  
Mohamed X. Ibrahim ◽  
Marcus Henricsson ◽  
Volkan I. Sayin ◽  
...  

Cancer cells produce high levels of mitochondria-associated reactive oxygen species (ROS) that can damage macromolecules, but also promote cell signaling and proliferation. Therefore, mitochondria-targeted antioxidants have been suggested to be useful in anti-cancer therapy, but no studies have convincingly addressed this question. Here, we administered the mitochondria-targeted antioxidants MitoQ and MitoTEMPO to mice with BRAF-induced malignant melanoma and KRAS-induced lung cancer, and found that these compounds had no impact on the number of primary tumors and metastases; and did not influence mitochondrial and nuclear DNA damage levels. Moreover, MitoQ and MitoTEMPO did not influence proliferation of human melanoma and lung cancer cell lines. MitoQ and its control substance dTPP, but not MitoTEMPO, increased glycolytic rates and reduced respiration in melanoma cells; whereas only dTPP produced this effect in lung cancer cells. Our results do not support the use of mitochondria-targeted antioxidants for anti-cancer monotherapy, at least not in malignant melanoma and lung cancer.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad M. Karimi ◽  
Ya Guo ◽  
Xiaokai Cui ◽  
Husayn A. Pallikonda ◽  
Veronika Horková ◽  
...  

AbstractCD4 and CD8 mark helper and cytotoxic T cell lineages, respectively, and serve as coreceptors for MHC-restricted TCR recognition. How coreceptor expression is matched with TCR specificity is central to understanding CD4/CD8 lineage choice, but visualising coreceptor gene activity in individual selection intermediates has been technically challenging. It therefore remains unclear whether the sequence of coreceptor gene expression in selection intermediates follows a stereotypic pattern, or is responsive to signaling. Here we use single cell RNA sequencing (scRNA-seq) to classify mouse thymocyte selection intermediates by coreceptor gene expression. In the unperturbed thymus, Cd4+Cd8a- selection intermediates appear before Cd4-Cd8a+ selection intermediates, but the timing of these subsets is flexible according to the strength of TCR signals. Our data show that selection intermediates discriminate MHC class prior to the loss of coreceptor expression and suggest a model where signal strength informs the timing of coreceptor gene activity and ultimately CD4/CD8 lineage choice.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110198
Author(s):  
Mohammed S. Aldughaim ◽  
Mashael R. Al-Anazi ◽  
Marie Fe F. Bohol ◽  
Dilek Colak ◽  
Hani Alothaid ◽  
...  

Cadmium telluride quantum dots (CdTe-QDs) are acquiring great interest in terms of their applications in biomedical sciences. Despite earlier sporadic studies on possible oncogenic roles and anticancer properties of CdTe-QDs, there is limited information regarding the oncogenic potential of CdTe-QDs in cancer progression. Here, we investigated the oncogenic effects of CdTe-QDs on the gene expression profiles of Chang cancer cells. Chang cancer cells were treated with 2 different doses of CdTe-QDs (10 and 25 μg/ml) at different time intervals (6, 12, and 24 h). Functional annotations helped identify the gene expression profile in terms of its biological process, canonical pathways, and gene interaction networks activated. It was found that the gene expression profiles varied in a time and dose-dependent manner. Validation of transcriptional changes of several genes through quantitative PCR showed that several genes upregulated by CdTe-QD exposure were somewhat linked with oncogenesis. CdTe-QD-triggered functional pathways that appear to associate with gene expression, cell proliferation, migration, adhesion, cell-cycle progression, signal transduction, and metabolism. Overall, CdTe-QD exposure led to changes in the gene expression profiles of the Chang cancer cells, highlighting that this nanoparticle can further drive oncogenesis and cancer progression, a finding that indicates the merit of immediate in vivo investigation.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 943-952 ◽  
Author(s):  
X. Cui ◽  
C.Q. Doe

Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast ‘sublineages’), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.


Sign in / Sign up

Export Citation Format

Share Document