scholarly journals High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages

2021 ◽  
pp. eabf8654
Author(s):  
Willianne Hoepel ◽  
Hung-Jen Chen ◽  
Chiara E. Geyer ◽  
Sona Allahverdiyeva ◽  
Xue D. Manz ◽  
...  

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific IgG in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more pro-inflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Notably, low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ Receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Finally, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small molecule inhibitor of Syk kinase.

2019 ◽  
Vol 4 (37) ◽  
pp. eaaw6693 ◽  
Author(s):  
Alissa C. Rothchild ◽  
Gregory S. Olson ◽  
Johannes Nemeth ◽  
Lynn M. Amon ◽  
Dat Mai ◽  
...  

Alveolar macrophages (AMs) are the first cells to be infected during Mycobacterium tuberculosis (M.tb.) infection. Thus, the AM response to infection is the first of many steps leading to initiation of the adaptive immune response required for efficient control of infection. A hallmark of M.tb. infection is the slow initiation of the adaptive response, yet the mechanisms responsible for this are largely unknown. To study the initial AM response to infection, we developed a system to identify, sort, and analyze M.tb.-infected AMs from the lung within the first 10 days of infection. In contrast to what has been previously described using in vitro systems, M.tb.-infected AMs up-regulate a cell-protective antioxidant transcriptional signature that is dependent on the lung environment but not bacterial virulence. Computational approaches including pathway analysis and transcription factor motif enrichment analysis identify NRF2 as a master regulator of the response. Using knockout mouse models, we demonstrate that NRF2 drives expression of the cell-protective signature in AMs and impairs the control of early bacterial growth. AMs up-regulate a substantial pro-inflammatory response to M.tb. infection only 10 days after infection, yet comparisons with bystander AMs from the same infected animals demonstrate that M.tb.-infected AMs generate a less robust inflammatory response than the uninfected cells around them. Our findings demonstrate that the initial macrophage response to M.tb. in the lung is far less inflammatory than has previously been described by in vitro systems and may impede the overall host response to infection.


Author(s):  
Willianne Hoepel ◽  
Hung-Jen Chen ◽  
Sona Allahverdiyeva ◽  
Xue Manz ◽  
Jurjan Aman ◽  
...  

AbstractFor yet unknown reasons, severely ill COVID-19 patients often become critically ill around the time of activation of adaptive immunity. Here, we show that anti-Spike IgG from serum of severely ill COVID-19 patients induces a hyper-inflammatory response by human macrophages, which subsequently breaks pulmonary endothelial barrier integrity and induces microvascular thrombosis. The excessive inflammatory capacity of this anti-Spike IgG is related to glycosylation changes in the IgG Fc tail. Moreover, the hyper-inflammatory response induced by anti-Spike IgG can be specifically counteracted in vitro by use of the active component of fostamatinib, an FDA- and EMA-approved therapeutic small molecule inhibitor of Syk.One sentence summaryAnti-Spike IgG promotes hyper-inflammation.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 617 ◽  
Author(s):  
Helen Freyberger ◽  
Yunxiu He ◽  
Amanda Roth ◽  
Mikeljon Nikolich ◽  
Andrey Filippov

A potential concern with bacteriophage (phage) therapeutics is a host-versus-phage response in which the immune system may neutralize or destroy phage particles and thus impair therapeutic efficacy, or a strong inflammatory response to repeated phage exposure might endanger the patient. Current literature is discrepant with regard to the nature and magnitude of innate and adaptive immune response to phages. The purpose of this work was to study the potential effects of Staphylococcus aureus phage K on the activation of human monocyte-derived dendritic cells. Since phage K acquired from ATCC was isolated around 90 years ago, we first tested its activity against a panel of 36 diverse S. aureus clinical isolates from military patients and found that it was lytic against 30/36 (83%) of strains. Human monocyte-derived dendritic cells were used to test for an in vitro phage-specific inflammatory response. Repeated experiments demonstrated that phage K had little impact on the expression of pro- and anti-inflammatory cytokines, or on MHC-I/II and CD80/CD86 protein expression. Given that dendritic cells are potent antigen-presenting cells and messengers between the innate and the adaptive immune systems, our results suggest that phage K does not independently affect cellular immunity or has a very limited impact on it.


2018 ◽  
Vol 32 (6) ◽  
pp. 502-517 ◽  
Author(s):  
Nuray Bayar Muluk ◽  
Fazilet Altın ◽  
Cemal Cingi

Objectives Our intention was to review all material published to date regarding superantigens (SAgs) and allergy from an otorhinolaryngological viewpoint to understand this association more clearly. Methods We identified all materials published mentioning both SAg and allergic rhinitis (AR), chronic sinusitis, asthma, and atopic dermatitis (AD) that are indexed on PubMed, Google, or the ProQuest Central databases. Results Staphylococcus aureus is a significant bacterial pathogen in humans and has the ability to produce enterotoxins with superantigenic features. The inflammatory response in allergy seen in both B cell and T cell may be attributed to SAgs. Sufferers of both allergic asthma with rhinitis and AR alone produce serological evidence of immunoglobulin E formation to SAgs produced by S. aureus. Perennial AR sufferers carry S. aureus more frequently and the presence of the organism within the nasal cavity may exacerbate perennial AR. SAg produced by S. aureus potentially worsens the asthmatic inflammatory response within the airway and may lead to the airways becoming hyperresponsive, as well as possibly activating T cells if asthmatic control is poor. Staphylococcal SAgs potentially increase the risk of developing chronic rhinosinusitis with nasal polyposis, additionally being a marker for more severe disease. If SAgs bring about chronic inflammatory responses in the nose and sinuses, then T cells excreting interferon-gamma may be a crucial mediator. In allergic dermatitis, S. aureus could be a key player in exacerbation of the condition. Even in younger pediatric patients with allergic dermatitis, allergic hypersensitivity to SAgs is frequent and may be a factor explaining how severe the condition becomes. Conclusion Just as SAgs are known to feature in many allergic conditions, they play their part in AR, chronic rhinosinusitis, asthma, and AD. Further research is required before the relationship between SAgs and allergy can be adequately explained.


Author(s):  
Alexa N. Lauer ◽  
Rene Scholtysik ◽  
Andreas Beineke ◽  
Christoph Georg Baums ◽  
Kristin Klose ◽  
...  

Streptococcus suis (S. suis) is an important opportunistic pathogen, which can cause septicemia and meningitis in pigs and humans. Previous in vivo observations in S. suis-infected pigs revealed lesions at the choroid plexus (CP). In vitro experiments with primary porcine CP epithelial cells (PCPEC) and human CP epithelial papilloma (HIBCPP) cells demonstrated that S. suis can invade and traverse the CP epithelium, and that the CP contributes to the inflammatory response via cytokine expression. Here, next generation sequencing (RNA-seq) was used to compare global transcriptome profiles of PCPEC and HIBCPP cells challenged with S. suis serotype (ST) 2 infected in vitro, and of pigs infected in vivo. Identified differentially expressed genes (DEGs) were, amongst others, involved in inflammatory responses and hypoxia. The RNA-seq data were validated via quantitative PCR of selected DEGs. Employing Gene Set Enrichment Analysis (GSEA), 18, 28, and 21 enriched hallmark gene sets (GSs) were identified for infected HIBCPP cells, PCPEC, and in the CP of pigs suffering from S. suis ST2 meningitis, respectively, of which eight GSs overlapped between the three different sample sets. The majority of these GSs are involved in cellular signaling and pathways, immune response, and development, including inflammatory response and hypoxia. In contrast, suppressed GSs observed during in vitro and in vivo S. suis ST2 infections included those, which were involved in cellular proliferation and metabolic processes. This study suggests that similar cellular processes occur in infected human and porcine CP epithelial cells, especially in terms of inflammatory response.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2676
Author(s):  
Léonie A. N. Staats ◽  
Hella Pfeiffer ◽  
Jasmin Knopf ◽  
Aylin Lindemann ◽  
Julia Fürst ◽  
...  

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to an adaptive immune response in the host and the formation of anti-SARS-CoV-2 specific antibodies. While IgG responses against SARS-CoV-2 have been characterized quite well, less is known about IgA. IgA2 activates immune cells and induces inflammation and neutrophil extracellular trap (NET) formation which may contribute to organ injury and fatal outcome in SARS-CoV-2-infected patients. SARS-CoV-2 spike protein specific antibody levels were measured in plasma samples of 15 noninfected controls and 82 SARS-CoV-2-infected patients with no or mild symptoms, moderate symptoms (hospitalization) or severe disease (intensive care unit, ICU). Antibody levels were compared to levels of C-reactive protein (CRP) and circulating extracellular DNA (ecDNA) as markers for general inflammation and NET formation, respectively. While levels of SARS-CoV-2-specific IgG were similar in all patient groups, IgA2 antibodies were restricted to severe disease and showed the strongest discrimination between nonfatal and fatal outcome in patients with severe SARS-CoV-2 infection. While anti-SARS-CoV-2 IgG and IgA2 levels correlated with CRP levels in severely diseased patients, only anti-SARS-CoV-2 IgA2 correlated with ecDNA. These data suggest that the formation of anti-SARS-CoV-2 IgA2 during SARS-CoV-2 infection is a marker for more severe disease related to NET formation and poor outcome.


2019 ◽  
Vol 7 (22) ◽  
pp. 3546-3559 ◽  
Author(s):  
Yiting Li ◽  
Congling Yang ◽  
Xianzhen Yin ◽  
Yuhua Sun ◽  
Jie Weng ◽  
...  

The fabricated AgPD-MNT exhibited potent antibacterial activity and mediated the inflammatory response.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1193 ◽  
Author(s):  
Liang Chen ◽  
Chun Hu ◽  
Molly Hood ◽  
Xue Zhang ◽  
Lu Zhang ◽  
...  

Novel coronaviruses (CoV) have emerged periodically around the world in recent years. The recurrent spreading of CoVs imposes an ongoing threat to global health and the economy. Since no specific therapy for these CoVs is available, any beneficial approach (including nutritional and dietary approach) is worth investigation. Based on recent advances in nutrients and phytonutrients research, a novel combination of vitamin C, curcumin and glycyrrhizic acid (VCG Plus) was developed that has potential against CoV infection. System biology tools were applied to explore the potential of VCG Plus in modulating targets and pathways relevant to immune and inflammation responses. Gene target acquisition, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment were conducted consecutively along with network analysis. The results show that VCG Plus can act on 88 hub targets which are closely connected and associated with immune and inflammatory responses. Specifically, VCG Plus has the potential to regulate innate immune response by acting on NOD-like and Toll-like signaling pathways to promote interferons production, activate and balance T-cells, and regulate the inflammatory response by inhibiting PI3K/AKT, NF-κB and MAPK signaling pathways. All these biological processes and pathways have been well documented in CoV infections studies. Therefore, our findings suggest that VCG Plus may be helpful in regulating immune response to combat CoV infections and inhibit excessive inflammatory responses to prevent the onset of cytokine storm. However, further in vitro and in vivo experiments are warranted to validate the current findings with system biology tools. Our current approach provides a new strategy in predicting formulation rationale when developing new dietary supplements.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Dequan Li ◽  
Cong Wang ◽  
Chuang Chi ◽  
Yuanyuan Wang ◽  
Jing Zhao ◽  
...  

Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models.Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA) to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS) in human umbilical cord endothelial cells (HUVECs) and alveolar macrophages.Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR) 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-αin both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types.Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.


2009 ◽  
Vol 297 (6) ◽  
pp. G1066-G1076 ◽  
Author(s):  
N. Markovic ◽  
L. A. McCaig ◽  
J. Stephen ◽  
S. Mizuguchi ◽  
R. A. W. Veldhuizen ◽  
...  

The systemic inflammatory response plays an important role in the progression of acute lung injury (ALI) to multiple organ dysfunction syndrome (MODS). However, the role of lung-derived inflammatory mediators in induction of the inflammatory response in remote organs is poorly understood. To address the above, we investigated the effects of lung inflammation on induction of inflammatory response(s) in the liver in vitro. Inflammation in mouse lungs was induced by intranasal administration of lipopolysaccharide (LPS; 1 mg/ml) followed by mechanical ventilation using the isolated perfused mouse lung method to obtain and characterize lung perfusate from the pulmonary circulation. LPS administration to mouse lungs resulted in an increased release of inflammation-relevant cytokines and chemokines into the perfusate (Luminex assay) compared with the saline-controls. Subsequently, primary mouse liver vascular endothelial cells (LVEC) or mouse polymorphonuclear leukocytes (PMN) in vitro were stimulated with the perfusate obtained from saline- or LPS-challenged lungs and assessed for various inflammation-relevant end points. The obtained results indicate that stimulation of LVEC with perfusate obtained from LPS-challenged lungs results in 1) reactive oxygen species (ROS) production; 2) activation of NF-κB; and 3) expression of E-selectin, ICAM-1, and VCAM-1 and a subsequent increase in PMN rolling and adhesion to LVEC. In addition, perfusate from LPS-challenged lung induced activation of PMN with respect to increased ROS production and upregulation of cell surface levels of adhesion molecules MAC-1 and VLA-4. Heat-inactivation of the perfusate obtained from LPS-challenged lungs was very effective in suppressing increased proadhesive phenotype (i.e., E-selectin and ICAM-1 expression) in LVEC, whereas targeted inhibition (immunoneutralization) of TNF-α and/or IL-6 in LPS-lung perfusate had no effect. Taken together, these findings indicate that multiple proinflammatory mediators (proteinaceous in nature) released from inflamed lungs act synergistically to induce systemic activation of circulating PMN and promote inflammatory responses in liver vascular endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document