scholarly journals Prevalence of Diarrhea-Associated Virulence Genes and Genetic Diversity in Escherichia coli Isolates from Fecal Material of Various Animal Hosts

2013 ◽  
Vol 79 (23) ◽  
pp. 7371-7380 ◽  
Author(s):  
Abhirosh Chandran ◽  
Asit Mazumder

ABSTRACTIn order to assess the health risk associated with a given source of fecal contamination using bacterial source tracking (BST), it is important to know the occurrence of potential pathogens as a function of host.Escherichia coliisolates (n= 593) from the feces of diverse animals were screened for various virulence genes:stx1andstx2(Shiga toxin-producingE. coli[STEC]),eaeand EAF (enteropathogenicE. coli[EPEC]), STh, STp, and LT (enterotoxigenicE. coli[ETEC]), andipaH(enteroinvasiveE. coli[EIEC]). Eleven hosts were positive for only theeae(10.11%) gene, representing atypical EPEC, while two hosts were positive for botheaeand EAF (1.3%), representing typical EPEC.stx1,stx2, or bothstx1andstx2were present in 1 (0.1%,) 10 (5.56%), and 2 (1.51%) hosts, respectively, and confirmed as non-O157 by using aE. coliO157rfb(rfbO157) TaqMan assay. STh and STp were carried by 2 hosts (2.33%) and 1 host (0.33%), respectively, while none of the hosts were positive for LT andipaH. The repetitive element palindromic PCR (rep-PCR) fingerprint analysis identified 221 unique fingerprints with a Shannon diversity index of 2.67. Multivariate analysis of variance revealed that majority of the isolates clustered according to the year of sampling. The higher prevalence of atypical EPEC and non-O157 STEC observed in different animal hosts indicates that they can be a reservoir of these pathogens with the potential to contaminate surface water and impact human health. Therefore, we suggest thatE. colifrom these sources must be included while constructing known source fingerprint libraries for tracking purposes. However, the observed genetic diversity and temporal variation need to be considered since these factors can influence the accuracy of BST results.

2011 ◽  
Vol 77 (23) ◽  
pp. 8259-8264 ◽  
Author(s):  
José A. Orden ◽  
Pilar Horcajo ◽  
Ricardo de la Fuente ◽  
José A. Ruiz-Santa-Quiteria ◽  
Gustavo Domínguez-Bernal ◽  
...  

ABSTRACTSubtilase cytotoxin (SubAB) from verotoxin (VT)-producingEscherichia coli(VTEC) strains was first described in the 98NK2 strain and has been associated with human disease. However, SubAB has recently been found in two VT-negativeE. colistrains (ED 591 and ED 32). SubAB is encoded by two closely linked, cotranscribed genes (subAandsubB). In this study, we investigated the presence ofsubABgenes in 52 VTEC strains isolated from cattle and 209 strains from small ruminants, using PCR. Most (91.9%) VTEC strains from sheep and goats and 25% of the strains from healthy cattle possessedsubABgenes. The presence ofsubABin a high percentage of the VTEC strains from small ruminants might increase the pathogenicity of these strains for human beings. Some differences in the results of PCRs and in the association with some virulence genes suggested the existence of different variants ofsubAB. We therefore sequenced thesubAgene in 12 strains and showed that thesubAgene in most of thesubAB-positive VTEC strains from cattle was almost identical (about 99%) to that in the 98NK2 strain, while thesubAgene in most of thesubAB-positive VTEC strains from small ruminants was almost identical to that in the ED 591 strain. We propose the termssubAB1to describe the SubAB-coding genes resembling that in the 98NK2 strain andsubAB2to describe those resembling that in the ED 591 strain.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Paul Thuras ◽  
Sarah Clock ◽  
...  

ABSTRACT Chicken meat products are hypothesized to be vehicles for transmitting antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC) to consumers. To reassess this hypothesis in the current era of heightened concerns about antimicrobial use in food animals, we analyzed 175 chicken-source E. coli isolates from a 2013 Consumer Reports national survey. Isolates were screened by PCR for ExPEC-defining virulence genes. The 25 ExPEC isolates (12% of 175) and a 2:1 randomly selected set of 50 non-ExPEC isolates were assessed for their phylogenetic/clonal backgrounds and virulence genotypes for comparison with their resistance profiles and the claims on the retail packaging label (“organic,” “no antibiotics,” and “natural”). Compared with the findings for non-ExPEC isolates, the group of ExPEC isolates had a higher prevalence of phylogroup B2 isolates (44% versus 4%; P < 0.001) and a lower prevalence of phylogroup A isolates (4% versus 30%; P = 0.001), a higher prevalence of multiple individual virulence genes, higher virulence scores (median, 11 [range, 4 to 16] versus 8 [range, 1 to 14]; P = 0.001), and higher resistance scores (median, 4 [range, 0 to 8] versus 3 [range, 0 to 10]; P < 0.001). All five isolates of sequence type 131 (ST131) were ExPEC (P = 0.003), were as extensively resistant as the other isolates tested, and had higher virulence scores than the other isolates tested (median, 12 [range, 11 to 13] versus 8 [range, 1 to 16]; P = 0.005). Organic labeling predicted lower resistance scores (median, 2 [range, 0 to 3] versus 4 [range, 0 to 10]; P = 0.008) but no difference in ExPEC status or virulence scores. These findings document a persisting reservoir of extensively antimicrobial-resistant ExPEC isolates, including isolates from ST131, in retail chicken products in the United States, suggesting a potential public health threat. IMPORTANCE We found that among Escherichia coli isolates from retail chicken meat products purchased across the United States in 2013 (many of these isolates being extensively antibiotic resistant), a minority had genetic profiles suggesting an ability to cause extraintestinal infections in humans, such as urinary tract infection, implying a risk of foodborne disease. Although isolates from products labeled “organic” were less extensively antibiotic resistant than other isolates, they did not appear to be less virulent. These findings suggest that retail chicken products in the United States, even if they are labeled “organic,” pose a potential health threat to consumers because they are contaminated with extensively antibiotic-resistant and, presumably, virulent E. coli isolates.


2013 ◽  
Vol 80 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Kun Yang ◽  
Eulyn Pagaling ◽  
Tao Yan

ABSTRACTPresently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenicEscherichia coli(EPEC) and enterohemorrhagicE. coli(EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of theeae,stx1, andstx2genes in sanitary sewage samples collected over a 13-month period detectedeaein all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) thanstx1andstx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio ofeaetouidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of theeaegene directly from the sewage samples covered the majority of theeaediversity in the sewage and detected 17 uniqueeaealleles belonging to 14 subtypes. Among them,eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmentalE. coliisolates were also obtained and used to determine the detection frequencies of the virulence genes as well aseaegenetic diversity for comparison.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Savita Chib ◽  
Farhan Ali ◽  
Aswin Sai Narain Seshasayee

ABSTRACT Prolonged stationary phase in bacteria, contrary to its name, is highly dynamic, with extreme nutrient limitation as a predominant stress. Stationary-phase cultures adapt by rapidly selecting a mutation(s) that confers a growth advantage in stationary phase (GASP). The phenotypic diversity of starving E. coli populations has been studied in detail; however, only a few mutations that accumulate in prolonged stationary phase have been described. This study documented the spectrum of mutations appearing in Escherichia coli during 28 days of prolonged starvation. The genetic diversity of the population increases over time in stationary phase to an extent that cannot be explained by random, neutral drift. This suggests that prolonged stationary phase offers a great model system to study adaptive evolution by natural selection. Prolonged stationary phase is an approximation of natural environments presenting a range of stresses. Survival in prolonged stationary phase requires alternative metabolic pathways for survival. This study describes the repertoire of mutations accumulating in starving Escherichia coli populations in lysogeny broth. A wide range of mutations accumulates over the course of 1 month in stationary phase. Single nucleotide polymorphisms (SNPs) constitute 64% of all mutations. A majority of these mutations are nonsynonymous and are located at conserved loci. There is an increase in genetic diversity in the evolving populations over time. Computer simulations of evolution in stationary phase suggest that the maximum frequency of mutations observed in our experimental populations cannot be explained by neutral drift. Moreover, there is frequent genetic parallelism across populations, suggesting that these mutations are under positive selection. Finally, functional analysis of mutations suggests that regulatory mutations are frequent targets of selection. IMPORTANCE Prolonged stationary phase in bacteria, contrary to its name, is highly dynamic, with extreme nutrient limitation as a predominant stress. Stationary-phase cultures adapt by rapidly selecting a mutation(s) that confers a growth advantage in stationary phase (GASP). The phenotypic diversity of starving E. coli populations has been studied in detail; however, only a few mutations that accumulate in prolonged stationary phase have been described. This study documented the spectrum of mutations appearing in Escherichia coli during 28 days of prolonged starvation. The genetic diversity of the population increases over time in stationary phase to an extent that cannot be explained by random, neutral drift. This suggests that prolonged stationary phase offers a great model system to study adaptive evolution by natural selection.


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Inga Fröding ◽  
Badrul Hasan ◽  
Isak Sylvin ◽  
Maarten Coorens ◽  
Pontus Nauclér ◽  
...  

ABSTRACT Invasive infections due to extended-spectrum-β-lactamase- and pAmpC-producing Escherichia coli (ESBL/pAmpC-EC) are an important cause of morbidity, often caused by the high-risk clone sequence type (ST131) and isolates classified as extraintestinal pathogenic E. coli (ExPEC). The relative influence of host immunocompetence versus microbiological virulence factors in the acquisition and outcome of bloodstream infections (BSI) is poorly understood. Herein, we used whole-genome sequencing on 278 blood culture isolates of ESBL/pAmpC-EC from 260 patients with community-onset BSI collected from 2012 to 2015 in Stockholm to study the association of virulence genes, sequence types, and antimicrobial resistance with severity of disease, infection source, ESBL/pAmpC-EC BSI low-risk patients, and patients with repeated episodes. ST131 subclade C2 comprised 29% of all patients. Factors associated with septic shock in multivariable analysis were patient host factors (hematologic cancer or transplantation and reduced daily living activity), presence of the E. coli virulence factor iss (increased serum survival), absence of phenotypic multidrug resistance, and absence of the genes pap and hsp. Adhesins, particularly pap, were associated with urinary tract infection (UTI) source, while isolates from post-prostate biopsy sepsis had a low overall number of virulence operons, including adhesins, and commonly belonged to ST131 clades A, B, and subclade C1, ST1193, and ST648. ST131 was associated with recurrent episodes. In conclusion, the most interesting finding is the association of iss with septic shock. Adhesins are important for UTI pathogenesis, while otherwise low-pathogenic isolates from the microbiota can cause post-prostate biopsy sepsis.


2012 ◽  
Vol 79 (1) ◽  
pp. 328-335 ◽  
Author(s):  
Jatinder P. S. Sidhu ◽  
Warish Ahmed ◽  
Leonie Hodgers ◽  
Simon Toze

ABSTRACTEscherichia coliisolates (n= 300) collected from six sites in subtropical Brisbane, Australia, prior to and after storm events were tested for the presence of 11 virulence genes (VGs) specific to diarrheagenic pathotypes. The presence ofeaeA,stx1,stx2, andehxAgenes specific for the enterohemorrhagicE. coli(EHEC) pathotype was detected in 56%, 6%, 10%, and 13% of isolates, respectively. The VGsastA(69%) andaggR(29%), carried by enteroaggregative (EAEC) pathotypes, were frequently detected inE. coliisolates. The enteropathogenicE. coli(EPEC) genebfpwas detected in 24% of isolates. In addition, enteroinvasiveE. coli(EIEC) VGipaHwas also detected in 14% of isolates. During dry periods, isolates belonging to the EAEC pathotype were most commonly detected (23%), followed by EHEC (11%) and EPEC (11%). Conversely, a more uniform prevalence of pathotypes, EPEC (14%), EAEC (12%), EIEC (10%), EHEC (7%), and ETEC (7%), was observed after the storm events. The results of this study highlight the widespread occurrence of potentially diarrheagenic pathotypes in the urban aquatic ecosystems. While the presence of VGs inE. coliisolates alone is insufficient to determine pathogenicity, the presence of diarrheagenicE. colipathotypes in high frequency after the storm events could lead to increased health risks if untreated storm water were to be used for nonpotable purposes and recreational activities.


2014 ◽  
Vol 81 (5) ◽  
pp. 1788-1798 ◽  
Author(s):  
Abhirosh Chandran ◽  
Asit Mazumder

ABSTRACTEscherichia coliisolates (n= 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs):stx1andstx2(Shiga toxin-producingE. coli[STEC]),eaeand the adherence factor (EAF) gene (enteropathogenicE. coli[EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenicE. coli[ETEC]), andipaH(enteroinvasiveE. coli[EIEC]). The only genes detected wereeaeandstx2, which were carried by 37.69% (n= 248) of the isolates. Onlyeaewas harbored by 26.74% (n= 176) of the isolates, representing potential atypical EPEC strains, while onlystx2was detected in 10.33% (n= 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both thestx2andeaegenes, representing potential EHEC strains. The prevalence of VGs (eaeorstx2) was significantly (P< 0.0001) higher in the fall season, and multiple genes (eaeplusstx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658E. coliisolates identified 335 unique fingerprints, with an overall Shannon diversity (H′) index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure ofE. colifluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenicE. colistrains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water.


2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
Katherine M. Lagerstrom ◽  
Elizabeth A. Hadly

A striking paucity of information exists on Escherichia coli in wild animals despite evidence that they harbour pathogenic and antimicrobial-resistant E. coli in their gut microbiomes and may even serve as melting pots for novel genetic combinations potentially harmful to human health. Wild animals have been implicated as the source of pathogenic E. coli outbreaks in agricultural production, but a lack of knowledge surrounding the genetics of E. coli in wild animals complicates source tracking and thus contamination curtailment efforts. As human populations continue to expand and invade wild areas, the potential for harmful microorganisms to transfer between humans and wildlife increases. Here, we conducted a literature review of the small body of work on E. coli in wild animals. We highlight the geographic and host taxonomic coverage to date, and in each, identify significant gaps. We summarize the current understanding of E. coli in wild animals, including its genetic diversity, host and geographic distribution, and transmission pathways within and between wild animal and human populations. The knowledge gaps we identify call for greater research efforts to understand the existence of E. coli in wild animals, especially in light of the potentially strong implications for global public health.


2019 ◽  
Vol 85 (22) ◽  
Author(s):  
Wataru Hayashi ◽  
Hayato Tanaka ◽  
Yui Taniguchi ◽  
Masaki Iimura ◽  
Eiji Soga ◽  
...  

ABSTRACT This study focused on the detection of the plasmid-mediated mcr colistin resistance gene in Escherichia coli isolates from wastewater treatment plants (WWTPs). Seven influent samples were collected from three WWTPs in Nagano Prefecture, Japan, during August and December 2018. Colistin-resistant E. coli isolates were selected on colistin-supplemented CHROMagar ECC plates. mcr-1-positive isolates were subjected to whole-genome sequencing (WGS) analysis. From six influent samples, seven mcr-1-positive but extended-spectrum β-lactamase (ESBL)-negative isolates belonging to different genetic lineages, namely, B2-O25:H4-ST131-fimH22, B2-O2:H1-ST135-fimH2, B1-O8:H9-ST764-fimH32, B1-O23:H16-ST453-fimH31, A-O81:H27-ST10-fimH54, A-O16:H5-ST871-fimH25, and F-O11:H6-ST457-fimH145, were detected. The MICs of colistin for these isolates ranged from 4 to 16 mg/liter. The mcr-1 genes were located on plasmids belonging to IncX4 and IncI2 in five and two isolates, respectively. Four IncX4 plasmids with the same size (33,309 bp) showed high sequence similarity (4 single-nucleotide variations). The remaining one IncX4 plasmid, with a size of 33,858 bp, carried the mcr-1 gene with the single synonymous nucleic substitution T27C. Two IncI2 plasmids with sizes of 60,710 bp and 60,733 bp had high sequence similarity (99.9% identity; 100% query coverage). Two of five isolates carrying IncX4 plasmids and both of the isolates carrying IncI2 plasmids harbored ColV plasmids carrying virulence-associated genes of avian pathogenic E. coli (APEC). In addition, another isolate of the B2-O25:H4-ST131-fimH22 lineage had those APEC-associated virulence genes on its chromosome. In conclusion, mcr-1-positive E. coli environmental isolates were mostly characterized as positive for APEC-associated virulence genes. The copresence of those genes may suggest the existence of a common source in animals and/or their associated environments. IMPORTANCE Colistin is considered a last-line therapeutic option in severe infections due to multidrug-resistant Gram-negative bacteria, in particular carbapenemase-producing Enterobacteriaceae and multidrug-resistant Acinetobacter baumannii. An increasing prevalence of mcr genes in diverse Enterobacteriaceae species, mainly Escherichia coli and Klebsiella pneumoniae from humans and food animals, has become a significant concern to public health all over the world. In Japan, mcr genes have so far been detected in food animals, raw meat, wastewater, and human clinical samples. This study reports the copresence of mcr-1 and avian pathogenic E. coli (APEC)-associated virulence genes in five of seven E. coli isolates recovered from aquatic environments in Japan. Our study highlights the importance and urgency of action to reduce environmental contamination by mcr genes that may likely occur due to exposure to untreated wastewater through combined sewer overflow by recent unusual weather.


2014 ◽  
Vol 58 (11) ◽  
pp. 6886-6895 ◽  
Author(s):  
Bente Olesen ◽  
Jakob Frimodt-Møller ◽  
Rikke Fleron Leihof ◽  
Carsten Struve ◽  
Brian Johnston ◽  
...  

ABSTRACTTo identify possible explanations for the recent global emergence ofEscherichia colisequence type (ST) 131 (ST131), we analyzed temporal trends within ST131 O25 for antimicrobial resistance, virulence genes, biofilm formation, and theH30 andH30-Rx subclones. For this, we surveyed the WHOE. coliandKlebsiellaCentre'sE. colicollection (1957 to 2011) for ST131 isolates, characterized them extensively, and assessed them for temporal trends. Overall, antimicrobial resistance increased temporally in prevalence and extent, due mainly to the recent appearance of theH30 (1997) andH30-Rx (2005) ST131 subclones. In contrast, neither the total virulence gene content nor the prevalence of biofilm production increased temporally, although non-H30 isolates increasingly qualified as extraintestinal pathogenicE. coli(ExPEC). Whereas virotype D occurred from 1968 forward, virotypes A and C occurred only after 2000 and 2002, respectively, in association with theH30andH30-Rx subclones, which were characterized by multidrug resistance (including extended-spectrum-beta-lactamase [ESBL] production:H30-Rx) and absence of biofilm production. Capsular antigen K100 occurred exclusively amongH30-Rx isolates (55% prevalence). Pulsotypes corresponded broadly with subclones and virotypes. Thus, ST131 should be regarded not as a unitary entity but as a group of distinctive subclones, with its increasing antimicrobial resistance having a strong clonal basis, i.e., the emergence of theH30 andH30-Rx ST131 subclones, rather than representing acquisition of resistance by diverse ST131 strains. Distinctive characteristics of theH30-Rx subclone—including specific virulence genes (iutA,afaanddra,kpsII), the K100 capsule, multidrug resistance, and ESBL production—possibly contributed to epidemiologic success, and some (e.g., K100) might serve as vaccine targets.


Sign in / Sign up

Export Citation Format

Share Document