scholarly journals Heme-Responsive Transcriptional Activation of Bordetella bhu Genes

2003 ◽  
Vol 185 (3) ◽  
pp. 909-917 ◽  
Author(s):  
Carin K. Vanderpool ◽  
Sandra K. Armstrong

ABSTRACT Bordetella pertussis and Bordetella bronchiseptica, gram-negative respiratory pathogens of mammals, possess a heme iron utilization system encoded by the bhuRSTUV genes. Preliminary evidence suggested that expression of the BhuR heme receptor was stimulated by the presence of heme under iron-limiting conditions. The hurIR (heme uptake regulator) genes were previously identified upstream of the bhuRSTUV gene cluster and are predicted to encode homologs of members of the iron starvation subfamily of extracytoplasmic function (ECF) regulators. In this study, B. pertussis and B. bronchiseptica ΔhurI mutants, predicted to lack an ECF σ factor, were constructed and found to be deficient in the utilization of hemin and hemoglobin. Genetic complementation of ΔhurI strains with plasmid-borne hurI restored wild-type levels of heme utilization. B. bronchiseptica ΔhurI mutant BRM23 was defective in heme-responsive production of the BhuR heme receptor; hurI in trans restored heme-inducible BhuR expression to the mutant and resulted in BhuR overproduction. Transcriptional analyses with bhuR-lacZ fusion plasmids confirmed that bhuR transcription was activated in iron-starved cells in response to heme compounds. Heme-responsive bhuR transcription was not observed in mutant BRM23, indicating that hurI is required for positive regulation of bhu gene expression. Furthermore, bhuR was required for heme-inducible bhu gene activation, supporting the hypothesis that positive regulation of bhuRSTUV occurs by a surface signaling mechanism involving the heme-iron receptor BhuR.

2004 ◽  
Vol 186 (4) ◽  
pp. 938-948 ◽  
Author(s):  
Carin K. Vanderpool ◽  
Sandra K. Armstrong

ABSTRACT The Bordetella pertussis heme utilization gene cluster hurIR bhuRSTUV encodes regulatory and transport functions required for assimilation of iron from heme and hemoproteins. Expression of the bhu genes is iron regulated and heme inducible. The putative extracytoplasmic function (ECF) σ factor, HurI, is required for heme-responsive bhu gene expression. In this study, transcriptional activation of B. pertussis bhu genes in response to heme compounds was shown to be dose dependent and specific for heme; protoporphyrin IX and other heme structural analogs did not activate bhu gene expression. Two promoters controlling expression of the heme utilization genes were mapped by primer extension analysis. The hurI promoter showed similarity to σ70-like promoters, and its transcriptional activity was iron regulated and heme independent. A second promoter identified upstream of bhuR exhibited little similarity to previously characterized ECF σ factor-dependent promoters. Expression of bhuR was iron regulated, heme responsive, and hurI dependent in B. pertussis, as shown in a previous study with Bordetella bronchiseptica. Further analyses showed that transcription originating at a distal upstream site and reading through the hurR-bhuR intergenic region contributes to bhuR expression under iron starvation conditions in the absence of heme inducer. The pattern of regulation of the readthrough transcript was consistent with transcription from the hurI promoter. The positions and regulation of the two promoters within the hur-bhu gene cluster influence the production of heme transport machinery so that maximal expression of the bhu genes occurs under iron starvation conditions only in the presence of heme iron sources.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Yu ◽  
Zaizhou Liu ◽  
Yuanyuan Liang ◽  
Feng Luo ◽  
Jie Zhang ◽  
...  

Abstract Signal transduction systems enable organisms to monitor their external environments and accordingly adjust the cellular processes. In mast cells, the second messenger Ap4A binds to the histidine triad nucleotide-binding protein 1 (HINT1), disrupts its interaction with the microphthalmia-associated transcription factor (MITF), and eventually activates the transcription of genes downstream of MITF in response to immunostimulation. How the HINT1 protein recognizes and is regulated by Ap4A remain unclear. Here, using eight crystal structures, biochemical experiments, negative stain electron microscopy, and cellular experiments, we report that Ap4A specifically polymerizes HINT1 in solution and in activated rat basophilic leukemia cells. The polymerization interface overlaps with the area on HINT1 for MITF interaction, suggesting a possible competitive mechanism to release MITF for transcriptional activation. The mechanism depends precisely on the length of the phosphodiester linkage of Ap4A. These results highlight a direct polymerization signaling mechanism by the second messenger.


1988 ◽  
Vol 8 (3) ◽  
pp. 1301-1308 ◽  
Author(s):  
T Enver ◽  
A C Brewer ◽  
R K Patient

Transcriptional activation of the Xenopus laevis beta-globin gene requires the synergistic action of the simian virus 40 enhancer and DNA replication in DEAE-dextran-mediated HeLa cell transfections. Replication does not act through covalent modification of the template, since its requirement was not obviated by the prior replication of the transfected DNA in eucaryotic cells. Transfection of DNA over a 100-fold range demonstrates that replication does not contribute to gene activation simply increasing template copy number. Furthermore, in cotransfections of replicating and nonreplicating constructs, only replicating templates were transcribed. Replication is not simply a requirement of chromatin assembly, since even unreplicated templates generated nucleosomal ladders. Stimulation of beta-globin transcription by DNA replication, though less marked, was also observed in calcium phosphate transfections. We interpret these results as revealing a dynamic role for replication in gene activation.


2020 ◽  
Vol 117 (48) ◽  
pp. 30805-30815
Author(s):  
Mingzhe Shen ◽  
Chae Jin Lim ◽  
Junghoon Park ◽  
Jeong Eun Kim ◽  
Dongwon Baek ◽  
...  

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


2021 ◽  
Vol 118 (6) ◽  
pp. e1922864118 ◽  
Author(s):  
Yu-Ling Lee ◽  
Keiichi Ito ◽  
Wen-Chieh Pi ◽  
I-Hsuan Lin ◽  
Chi-Shuen Chu ◽  
...  

The chimeric transcription factor E2A-PBX1, containing the N-terminal activation domains of E2A fused to the C-terminal DNA-binding domain of PBX1, results in 5% of pediatric acute lymphoblastic leukemias (ALL). We recently have reported a mechanism for RUNX1-dependent recruitment of E2A-PBX1 to chromatin in pre-B leukemic cells; but the subsequent E2A-PBX1 functions through various coactivators and the general transcriptional machinery remain unclear. The Mediator complex plays a critical role in cell-specific gene activation by serving as a key coactivator for gene-specific transcription factors that facilitates their function through the RNA polymerase II transcriptional machinery, but whether Mediator contributes to aberrant expression of E2A-PBX1 target genes remains largely unexplored. Here we show that Mediator interacts directly with E2A-PBX1 through an interaction of the MED1 subunit with an E2A activation domain. Results of MED1 depletion by CRISPR/Cas9 further indicate that MED1 is specifically required for E2A-PBX1–dependent gene activation and leukemic cell growth. Integrated transcriptome and cistrome analyses identify pre-B cell receptor and cell cycle regulatory genes as direct cotargets of MED1 and E2A-PBX1. Notably, complementary biochemical analyses also demonstrate that recruitment of E2A-PBX1 to a target DNA template involves a direct interaction with DNA-bound RUNX1 that can be further stabilized by EBF1. These findings suggest that E2A-PBX1 interactions with RUNX1 and MED1/Mediator are of functional importance for both gene-specific transcriptional activation and maintenance of E2A-PBX1–driven leukemia. The MED1 dependency for E2A-PBX1–mediated gene activation and leukemogenesis may provide a potential therapeutic opportunity by targeting MED1 in E2A-PBX1+ pre-B leukemia.


2000 ◽  
Vol 20 (23) ◽  
pp. 8879-8888 ◽  
Author(s):  
Zuqin Nie ◽  
Yutong Xue ◽  
Dafeng Yang ◽  
Sharleen Zhou ◽  
Bonnie J. Deroo ◽  
...  

ABSTRACT The SWI/SNF family of chromatin-remodeling complexes facilitates gene activation by assisting transcription machinery to gain access to targets in chromatin. This family includes BAF (also called hSWI/SNF-A) and PBAF (hSWI/SNF-B) from humans and SWI/SNF and Rsc fromSaccharomyces cerevisiae. However, the relationship between the human and yeast complexes is unclear because all human subunits published to date are similar to those of both yeast SWI/SNF and Rsc. Also, the two human complexes have many identical subunits, making it difficult to distinguish their structures or functions. Here we describe the cloning and characterization of BAF250, a subunit present in human BAF but not PBAF. BAF250 contains structural motifs conserved in yeast SWI1 but not in any Rsc components, suggesting that BAF is related to SWI/SNF. BAF250 is also a homolog of the Drosophila melanogaster Osa protein, which has been shown to interact with a SWI/SNF-like complex in flies. BAF250 possesses at least two conserved domains that could be important for its function. First, it has an AT-rich DNA interaction-type DNA-binding domain, which can specifically bind a DNA sequence known to be recognized by a SWI/SNF family-related complex at the β-globin locus. Second, BAF250 stimulates glucocorticoid receptor-dependent transcriptional activation, and the stimulation is sharply reduced when the C-terminal region of BAF250 is deleted. This region of BAF250 is capable of interacting directly with the glucocorticoid receptor in vitro. Our data suggest that BAF250 confers specificity to the human BAF complex and may recruit the complex to its targets through either protein-DNA or protein-protein interactions.


Development ◽  
1998 ◽  
Vol 125 (20) ◽  
pp. 3947-3954
Author(s):  
P. Balint-Kurti ◽  
G.T. Ginsburg ◽  
J. Liu ◽  
A.R. Kimmel

The pseudoplasmodium or migrating slug of Dictyostelium is composed of non-terminally differentiated cells, organized along an anteroposterior axis. Cells in the anterior region of the slug define the prestalk compartment, whereas most of the posterior zone consists of prespore cells. We now present evidence that the cAMP-dependent protein kinase (PKA) and the RING domain/leucine zipper protein rZIP interact genetically to mediate a transcriptional activation gradient that regulates the differentiation of prespore cells within the posterior compartment of the slug. PKA is absolutely required for prespore differentiation. In contrast, rZIP negatively regulates prespore patterning; rzpA- cells, which lack rZIP, have reduced prestalk differentiation and a corresponding increase in prespore-specific gene expression. Using cell-specific markers and chimaeras of wild-type and rzpA- cells, we show that rZIP functions non-autonomously to establish a graded, prespore gene activation signal but autonomously to localize prespore expression. Overexpression of either the catalytic subunit or a dominant-negative regulatory subunit of PKA further demonstrates that PKA lies within the intracellular pathway that mediates the extracellular signal and regulates prespore patterning. Finally, we show that a 5′-distal segment within a prespore promoter that is responsive to a graded signal is also sensitive to PKA and rZIP, indicating that it acts directly at the level of prespore-specific gene transcription for regulation.


2007 ◽  
Vol 27 (6) ◽  
pp. 2092-2102 ◽  
Author(s):  
Qin Yan ◽  
Steven Bartz ◽  
Mao Mao ◽  
Lianjie Li ◽  
William G. Kaelin

ABSTRACT Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor, consisting of an alpha subunit and a beta subunit, that controls cellular responses to hypoxia. HIFα contains two transcriptional activation domains called the N-terminal transactivation domain (NTAD) and the C-terminal transactivation domain (CTAD). HIFα is destabilized by prolyl hydroxylation catalyzed by EglN family members. In addition, CTAD function is inhibited by asparagine hydroxylation catalyzed by FIH1. Both hydroxylation reactions are linked to oxygen availability. The von Hippel-Lindau tumor suppressor protein (pVHL) is frequently mutated in kidney cancer and is part of the ubiquitin ligase complex that targets prolyl hydroxylated HIFα for destruction. Recent studies suggest that HIF2α plays an especially important role in promoting tumor formation by pVHL-defective renal carcinoma cells among the three HIFα paralogs. Here we dissected the relative contribution of the two HIF2α transactivation domains to hypoxic gene activation and renal carcinogenesis and investigated the regulation of the HIF2α CTAD by FIH1. We found that the HIF2α NTAD is capable of activating both artificial and naturally occurring HIF-responsive promoters in the absence of the CTAD. Moreover, we found that the HIF2α CTAD, in contrast to the HIF1α CTAD, is relatively resistant to the inhibitory effects of FIH1 under normoxic conditions and that, perhaps as a result, both the NTAD and CTAD cooperate to promote renal carcinogenesis in vivo.


1999 ◽  
Vol 189 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Nobuo Kiuchi ◽  
Koichi Nakajima ◽  
Makoto Ichiba ◽  
Toshiyuki Fukada ◽  
Masahiro Narimatsu ◽  
...  

The signal transducers and activators of transcription (STAT) family members have been implicated in regulating the growth, differentiation, and death of normal and transformed cells in response to either extracellular stimuli, including cytokines and growth factors, or intracellular tyrosine kinases. c-myc expression is coordinately regulated by multiple signals in these diverse cellular responses. We show that STAT3 mostly mediates the rapid activation of the c-myc gene upon stimulation of the interleukin (IL)-6 receptor or gp130, a signal transducing subunit of the receptor complexes for the IL-6 cytokine family. STAT3 does so most likely by binding to cis-regulatory region(s) of the c-myc gene. We show that STAT3 binds to a region overlapping with the E2F site in the c-myc promoter and this site is critical for the c-myc gene promoter– driven transcriptional activation by IL-6 or gp130 signals. This is the first identification of the linkage between a member of the STAT family and the c-myc gene activation, and also explains how the IL-6 family of cytokines is capable of inducing the expression of the c-myc gene.


2014 ◽  
Vol 35 (4) ◽  
pp. 688-698 ◽  
Author(s):  
Robert M. Yarrington ◽  
Jared S. Rudd ◽  
David J. Stillman

Promoters often contain multiple binding sites for a single factor. The yeastHOgene contains nine highly conserved binding sites for the SCB (Swi4/6-dependent cell cycle box) binding factor (SBF) complex (composed of Swi4 and Swi6) in the 700-bp upstream regulatory sequence 2 (URS2) promoter region. Here, we show that the distal and proximal SBF sites in URS2 function differently. Chromatin immunoprecipitation (ChIP) experiments show that SBF binds preferentially to the left side of URS2 (URS2-L), despite equivalent binding to the left-half and right-half SBF sitesin vitro. SBF binding at URS2-L sites depends on prior chromatin remodeling events at the upstream URS1 region. These signals from URS1 influence chromatin changes at URS2 but only at sites within a defined distance. SBF bound at URS2-L, however, is unable to activate transcription but instead facilitates SBF binding to sites in the right half (URS2-R), which are required for transcriptional activation. Factor binding atHO, therefore, follows a temporal cascade, with SBF bound at URS2-L serving to relay a signal from URS1 to the SBF sites in URS2-R that ultimately activate gene expression. Taken together, we describe a novel property of a transcription factor that can have two distinct roles in gene activation, depending on its location within a promoter.


Sign in / Sign up

Export Citation Format

Share Document