scholarly journals Only One of the Five CheY Homologs in Vibrio cholerae Directly Switches Flagellar Rotation

2005 ◽  
Vol 187 (24) ◽  
pp. 8403-8410 ◽  
Author(s):  
Akihiro Hyakutake ◽  
Michio Homma ◽  
Melissa J. Austin ◽  
Markus A. Boin ◽  
Claudia C. Häse ◽  
...  

ABSTRACT Vibrio cholerae has three sets of chemotaxis (Che) proteins, including three histidine kinases (CheA) and four response regulators (CheY) that are encoded by three che gene clusters. We deleted the cheY genes individually or in combination and found that only the cheY3 deletion impaired chemotaxis, reinforcing the previous conclusion that che cluster II is involved in chemotaxis. However, this does not exclude the involvement of the other clusters in chemotaxis. In other bacteria, phospho-CheY binds directly to the flagellar motor to modulate its rotation, and CheY overexpression, even without CheA, causes extremely biased swimming behavior. We reasoned that a V. cholerae CheY homolog, if it directly controls flagellar rotation, should also induce extreme swimming behavior when overproduced. This was the case for CheY3 (che cluster II). However, no other CheY homolog, including the putative CheY (CheY0) protein encoded outside the che clusters, affected swimming, demonstrating that these CheY homologs cannot act directly on the flagellar motor. CheY4 very slightly enhanced the spreading of an Escherichia coli cheZ mutant in semisolid agar, raising the possibility that it can affect chemotaxis by removing a phosphoryl group from CheY3. We also found that V. cholerae CheY3 and E. coli CheY are only partially exchangeable. Mutagenic analyses suggested that this may come from coevolution of the interacting pair of proteins, CheY and the motor protein FliM. Taken together, it is likely that the principal roles of che clusters I and III as well as cheY0 are to control functions other than chemotaxis.

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Qiuxian Cai ◽  
Zhaojun Li ◽  
Qi Ouyang ◽  
Chunxiong Luo ◽  
Vernita D. Gordon

ABSTRACTPseudomonas aeruginosais an opportunistic human pathogen that has long been known to chemotax. More recently, it has been established that chemotaxis is an important factor in the ability ofP. aeruginosato make biofilms. Genes that allowP. aeruginosato chemotax are homologous with genes in the paradigmatic model organism for chemotaxis,Escherichia coli. However,P. aeruginosais singly flagellated andE. colihas multiple flagella. Therefore, the regulation of counterclockwise/clockwise flagellar motor bias that allowsE. colito efficiently chemotax by runs and tumbles would lead to inefficient chemotaxis byP. aeruginosa, as half of a randomly oriented population would respond to a chemoattractant gradient in the wrong sense. HowP. aeruginosaregulates flagellar rotation to achieve chemotaxis is not known. Here, we analyze the swimming trajectories of single cells in microfluidic channels and the rotations of cells tethered by their flagella to the surface of a variable-environment flow cell. We show thatP. aeruginosachemotaxes by symmetrically increasing the durations of both counterclockwise and clockwise flagellar rotations when swimming up the chemoattractant gradient and symmetrically decreasing rotation durations when swimming down the chemoattractant gradient. Unlike the case forE. coli, the counterclockwise/clockwise bias stays constant forP. aeruginosa. We describeP. aeruginosa’s chemotaxis using an analytical model for symmetric motor regulation. We use this model to do simulations that show that, givenP. aeruginosa’s physiological constraints on motility, its distinct, symmetric regulation of motor switching optimizes chemotaxis.IMPORTANCEChemotaxis has long been known to strongly affect biofilm formation by the opportunistic human pathogenP. aeruginosa, whose essential chemotaxis genes have homologues inE. coli, which achieves chemotaxis by biasing the relative probability of counterclockwise and clockwise flagellar rotation. However, the physiological difference between multiflagellatedE. coliand singly flagellatedP. aeruginosaimplies that biased motor regulation should preventP. aeruginosapopulations from chemotaxing efficiently. Here, we used experiments, analytical modeling, and simulations to demonstrate thatP. aeruginosauses unbiased, symmetric regulation of the flagellar motor to maximize its chemotaxis efficiency. This mode of chemotaxis was not previously known and demonstrates a new variant of a paradigmatic signaling system in an important human pathogen.


2006 ◽  
Vol 188 (4) ◽  
pp. 1466-1472 ◽  
Author(s):  
Toshiharu Yakushi ◽  
Junghoon Yang ◽  
Hajime Fukuoka ◽  
Michio Homma ◽  
David F. Blair

ABSTRACT In Escherichia coli, rotation of the flagellar motor has been shown to depend upon electrostatic interactions between charged residues of the stator protein MotA and the rotor protein FliG. These charged residues are conserved in the Na+-driven polar flagellum of Vibrio alginolyticus, but mutational studies in V. alginolyticus suggested that they are relatively unimportant for motor rotation. The electrostatic interactions detected in E. coli therefore might not be a general feature of flagellar motors, or, alternatively, the V. alginolyticus motor might rely on similar interactions but incorporate additional features that make it more robust against mutation. Here, we have carried out a comparative study of chimeric motors that were resident in E. coli but engineered to use V. alginolyticus stator components, rotor components, or both. Charged residues in the V. alginolyticus rotor and stator proteins were found to be essential for motor rotation when the proteins functioned in the setting of the E. coli motor. Patterns of synergism and suppression in rotor/stator double mutants indicate that the V. alginolyticus proteins interact in essentially the same way as their counterparts in E. coli. The robustness of the rotor-stator interface in V. alginolyticus is in part due to the presence of additional charged residues in PomA but appears mainly due to other factors, because an E. coli motor using both rotor and stator components from V. alginolyticus remained sensitive to mutation. Motor function in V. alginolyticus may be enhanced by the proteins MotX and MotY.


2006 ◽  
Vol 281 (43) ◽  
pp. 32694-32704 ◽  
Author(s):  
Steven L. Porter ◽  
George H. Wadhams ◽  
Angela C. Martin ◽  
Elaine D. Byles ◽  
David E. Lancaster ◽  
...  

The Escherichia coli two-component chemosensory pathway has been extensively studied, and its response regulator, CheY, has become a paradigm for response regulators. However, unlike E. coli, most chemotactic nonenteric bacteria have multiple CheY homologues. The roles and cellular localization of the CheYs in Rhodobacter sphaeroides were determined. Only two CheYs were required for chemotaxis, CheY6 and either CheY3 or CheY4. These CheYs were partially localized to either of the two chemotaxis signaling clusters, with the remaining protein delocalized. Interestingly, mutation of the CheY6 phosphorylatable aspartate to asparagine produced a stopped motor, caused by phosphorylation on alternative site Ser-83 by CheA. Extensive mutagenesis of E. coli CheY has identified a number of activating mutations, which have been extrapolated to other response regulators (D13K, Y106W, and I95V). Analogous mutations in R. sphaeroides CheYs did not cause activation. These results suggest that although the R. sphaeroides and E. coli CheYs are similar in that they require phosphorylation for activation, they may differ in both the nature of the phosphorylation-induced conformational change and their subsequent interactions with the flagellar motor. Caution should therefore be used when projecting from E. coli CheY onto novel response regulators.


2005 ◽  
Vol 187 (5) ◽  
pp. 1695-1701 ◽  
Author(s):  
Karen A. Morehouse ◽  
Ian G. Goodfellow ◽  
R. Elizabeth Sockett

ABSTRACT Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.


2020 ◽  
Vol 14 (4) ◽  
pp. 312-324
Author(s):  
Sadra S. Tehrani ◽  
Abolfazl Jahangiri ◽  
Mortaza Taheri-Anganeh ◽  
Hossein Maghsoudi ◽  
Saeed Khalili ◽  
...  

Background: Cholera triggered by Vibrio cholerae remains the main reason for morbidity and mortality all over the world. In addition, salmonellosis is regarded as an infectious disease that makes it essential for the identification and detection of Salmonella. With a beta-barrel structure consisting of eight non-parallel beta strands, OmpW family is widely distributed among gram-negative bacteria. Moreover, OmpW isolated from S. typhimurium and Vibrio cholerae can be used in vaccine design. Methods: Topology prediction was determined. T-cell and B-cell epitopes were selected from exposed areas, and sequence conservancy was evaluated. The remaining loops and inaccessible residues were removed to prepare OmpW-1. High antigenicity peptides were detected to replace inappropriate residues to obtain OmpW-2. Physicochemical properties were assessed, and antigenicity, hydrophobicity, flexibility, and accessibility were compared to the native Omp-W structure. Low score areas were removed from the designed structure for preparing the OmpW-3. To construct OmpW-4, TTFrC was used as T-CD4+ cell-stimulating factor and CTB as adjuvant to the end of the C-terminal of this sequence, which can increase the antigenicity and sequence density. The sequences were re-analyzed to delete the unfavorable residues. Besides, the solubility of the mature OmpW and the designed structure were predicted while overexpressed in E. coli. Results: The designed vaccine is a stable protein which has immune cells recognizing epitopes and is considered as an antigen. The construct can be overexpressed in a E. coli. Conclusion: The multi-epitope vaccine is a suitable stimulator for immune system and would be a candidate for experimental research. Recent patents describing numerous inventions related to the clinical facets of vaccine peptide against human infectious disease.


2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


2018 ◽  
Vol 201 (8) ◽  
Author(s):  
Elizabeth Ward ◽  
Eun A Kim ◽  
Joseph Panushka ◽  
Tayson Botelho ◽  
Trevor Meyer ◽  
...  

ABSTRACTWhile the protein complex responsible for controlling the direction (clockwise [CW] or counterclockwise [CCW]) of flagellar rotation has been fairly well studied inEscherichia coliandSalmonella, less is known about the switch complex inBacillus subtilisor other Gram-positive species. Two component proteins (FliG and FliM) are shared betweenE. coliandB. subtilis, but in place of the protein FliN found inE. coli, theB. subtiliscomplex contains the larger protein FliY. Notably, inB. subtilisthe signaling protein CheY-phosphate induces a switch from CW to CCW rotation, opposite to its action inE. coli. Here, we have examined the architecture and function of the switch complex inB. subtilisusing targeted cross-linking, bacterial two-hybrid protein interaction experiments, and characterization of mutant phenotypes. In major respects, theB. subtilisswitch complex appears to be organized similarly to that inE. coli. The complex is organized around a ring built from the large middle domain of FliM; this ring supports an array of FliG subunits organized in a similar way to that ofE. coli, with the FliG C-terminal domain functioning in the generation of torque via conserved charged residues. Key differences fromE. coliinvolve the middle domain of FliY, which forms an additional, more outboard array, and the C-terminal domains of FliM and FliY, which are organized into both FliY homodimers and FliM heterodimers. Together, the results suggest that the CW and CCW conformational states are similar in the Gram-negative and Gram-positive switches but that CheY-phosphate drives oppositely directed movements in the two cases.IMPORTANCEFlagellar motility plays key roles in the survival of many bacteria and in the harmful action of many pathogens. Bacterial flagella rotate; the direction of flagellar rotation is controlled by a multisubunit protein complex termed the switch complex. This complex has been extensively studied in Gram-negative model species, but little is known about the complex inBacillus subtilisor other Gram-positive species. Notably, the switch complex in Gram-positive species responds to its effector CheY-phosphate (CheY-P) by switching to CCW rotation, whereas inE. coliorSalmonellaCheY-P acts in the opposite way, promoting CW rotation. In the work here, the architecture of theB. subtilisswitch complex has been probed using cross-linking, protein interaction measurements, and mutational approaches. The results cast light on the organization of the complex and provide a framework for understanding the mechanism of flagellar direction control inB. subtilisand other Gram-positive species.


2000 ◽  
Vol 182 (6) ◽  
pp. 1731-1738 ◽  
Author(s):  
Joan R. Butterton ◽  
Michael H. Choi ◽  
Paula I. Watnick ◽  
Patricia A. Carroll ◽  
Stephen B. Calderwood

ABSTRACT A 7.5-kbp fragment of chromosomal DNA downstream of theVibrio cholerae vibriobactin outer membrane receptor,viuA, and the vibriobactin utilization gene,viuB, was recovered from a Sau3A lambda library of O395 chromosomal DNA. By analogy with the genetic organization of the Escherichia coli enterobactin gene cluster, in which the enterobactin biosynthetic and transport genes lie adjacent to the enterobactin outer membrane receptor, fepA, and the utilization gene, fes, the cloned DNA was examined for the ability to restore siderophore synthesis to E. coli entmutants. Cross-feeding studies demonstrated that an E. coli entF mutant complemented with the cloned DNA regained the ability to synthesize enterobactin and to grow in low-iron medium. Sequence analysis of the cloned chromosomal DNA revealed an open reading frame downstream of viuB which encoded a deduced protein of greater than 2,158 amino acids, homologous to Yersinia sp. HMWP2, Vibrio anguillarum AngR, and E. coliEntF. A mutant with an in-frame deletion of this gene, namedvibF, was created with classical V. choleraestrain O395 by in vivo marker exchange. In cross-feeding studies, this mutant was unable to synthesize ferric vibriobactin but was able to utilize exogenous siderophore. Complementation of the mutant with a cloned vibF fragment restored vibriobactin synthesis to normal. The expression of the vibF promoter was found to be negatively regulated by iron at the transcriptional level, under the control of the V. cholerae fur gene. Expression ofvibF was not autoregulatory and neither affected nor was affected by the expression of irgA or viuA. The promoter of vibF was located by primer extension and was found to contain a dyad symmetric nucleotide sequence highly homologous to the E. coli Fur binding consensus sequence. A footprint of purified V. cholerae Fur on the vibFpromoter, overlapping the Fur binding consensus sequence, was observed using DNase I footprinting. The protein product of vibF is homologous to the multifunctional nonribosomal protein synthetases and is necessary for the biosynthesis of vibriobactin.


2003 ◽  
Vol 185 (21) ◽  
pp. 6385-6391 ◽  
Author(s):  
Jenny G. Smith ◽  
Jamie A. Latiolais ◽  
Gerald P. Guanga ◽  
Sindhura Citineni ◽  
Ruth E. Silversmith ◽  
...  

ABSTRACT In a two-component regulatory system, an important means of signal transduction in microorganisms, a sensor kinase phosphorylates a response regulator protein on an aspartyl residue, resulting in activation. The active site of the response regulator is highly charged (containing a lysine, the phosphorylatable aspartate, two additional aspartates involved in metal binding, and an Mg2+ ion), and introduction of the dianionic phosphoryl group results in the repositioning of charged moieties. Furthermore, substitution of one of the Mg2+-coordinating aspartates with lysine or arginine in the Escherichia coli chemotaxis response regulator CheY results in phosphorylation-independent activation. In order to examine the consequences of altered charge distribution for response regulator activity and to identify possible additional amino acid substitutions that result in phosphorylation-independent activation, we made 61 CheY mutants in which residues close to the site of phosphorylation (Asp57) were replaced by various charged amino acids. Most substitutions (47 of 61) resulted in the complete loss of CheY activity, as measured by the inability to support clockwise flagellar rotation. However, 10 substitutions, all introducing a new positive charge, resulted in the loss of chemotaxis but in the retention of some clockwise flagellar rotation. Of the mutants in this set, only the previously identified CheY13DK and CheY13DR mutants displayed clockwise activity in the absence of the CheA sensor kinase. The absence of negatively charged substitution mutants with residual activity suggests that the introduction of additional negative charges into the active site is particularly deleterious for CheY function. Finally, the spatial distribution of positions at which amino acid substitutions are functionally tolerated or not tolerated is consistent with the presently accepted mechanism of response regulator activation and further suggests a possible role for Met17 in signal transduction by CheY.


2021 ◽  
Author(s):  
Emily N. Kennedy ◽  
Sarah A. Barr ◽  
Xiaolin Liu ◽  
Luke R. Vass ◽  
Yanan Liu ◽  
...  

Azorhizobium caulinodans is a nitrogen-fixing bacterium that forms root nodules on its host legume, Sesbania rostrata . This agriculturally significant symbiotic relationship is important in lowland rice cultivation, and allows for nitrogen fixation under flood conditions. Chemotaxis plays an important role in bacterial colonization of the rhizosphere. Plant roots release chemical compounds that are sensed by bacteria, triggering chemotaxis along a concentration gradient toward the roots. This gives motile bacteria a significant competitive advantage during root surface colonization. Although plant-associated bacterial genomes often encode multiple chemotaxis systems, A. caulinodans appears to encode only one. The che cluster on the A. caulinodans genome contains cheA , cheW , cheY2 , cheB , and cheR . Two other chemotaxis genes, cheY1 and cheZ , are located independently from the che operon. Both CheY1 and CheY2 are involved in chemotaxis, with CheY1 being the predominant signaling protein. A. caulinodans CheA contains an unusual set of C-terminal domains: a CheW-like/Receiver pair (termed W2-Rec), follows the more common single CheW-like domain. W2-Rec impacts both chemotaxis and CheA function. We found a preference for transfer of phosphoryl groups from CheA to CheY2, rather than to W2-Rec or CheY1, which appears to be involved in flagellar motor binding. Furthermore, we observed increased phosphoryl group stabilities on CheY1 compared to CheY2 or W2-Rec. Finally, CheZ enhanced dephosphorylation of CheY2 substantially more than CheY1, but had no effect on the dephosphorylation rate of W2-Rec. This network of phosphotransfer reactions highlights a previously uncharacterized scheme for regulation of chemotactic responses. IMPORTANCE Chemotaxis allows bacteria to move towards nutrients and away from toxins in their environment. Chemotactic movement provides a competitive advantage over non-specific motion. CheY is an essential mediator of the chemotactic response with phosphorylated and unphosphorylated forms of CheY differentially interacting with the flagellar motor to change swimming behavior. Previously established schemes of CheY dephosphorylation include action of a phosphatase and/or transfer of the phosphoryl group to another receiver domain that acts as a sink. Here, we propose A. caulinodans uses a concerted mechanism in which the Hpt domain of CheA, CheY2, and CheZ function together as a dual sink system to rapidly reset chemotactic signaling. To the best of our knowledge, this mechanism is unlike any that have previously been evaluated. Chemotaxis systems that utilize both receiver and Hpt domains as phosphate sinks likely occur in other bacterial species.


Sign in / Sign up

Export Citation Format

Share Document