scholarly journals Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag

2017 ◽  
Vol 92 (2) ◽  
Author(s):  
Tomokazu Tamura ◽  
Takasuke Fukuhara ◽  
Takuro Uchida ◽  
Chikako Ono ◽  
Hiroyuki Mori ◽  
...  

ABSTRACTThe familyFlaviviridaeconsists of four genera,Flavivirus,Pestivirus,Pegivirus, andHepacivirus, and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genomes retaining infectivity remains difficult. Here, we applied the 11-amino-acid subunit derived from NanoLuc luciferase to the engineering of theFlaviviridaeviruses and then examined the biological characteristics of the viruses. We successfully generated recombinant viruses carrying the split-luciferase gene, including dengue virus, Japanese encephalitis virus, hepatitis C virus (HCV), and bovine viral diarrhea virus. The stability of the viruses was confirmed by five rounds of serial passages in the respective susceptible cell lines. The propagation of the recombinant luciferase viruses in each cell line was comparable to that of the parental viruses. By using a purified counterpart luciferase protein, this split-luciferase assay can be applicable in various cell lines, even when it is difficult to transduce the counterpart gene. The efficacy of antiviral reagents against the recombinant viruses could be monitored by the reduction of luciferase expression, which was correlated with that of viral RNA, and the recombinant HCV was also useful to examine viral dynamicsin vivo. Taken together, our findings indicate that the recombinantFlaviviridaeviruses possessing the split NanoLuc luciferase gene generated here provide powerful tools to understand viral life cycle and pathogenesis and a robust platform to develop novel antivirals againstFlaviviridaeviruses.IMPORTANCEThe construction of reporter viruses possessing a stable transgene capable of expressing specific signals is crucial to investigations of viral life cycle and pathogenesis and the development of antivirals. However, it is difficult to maintain the stability of a large foreign gene, such as those for fluorescence and bioluminescence, after insertion into a viral genome. Here, we successfully generated recombinantFlaviviridaeviruses carrying the 11-amino-acid subunit derived from NanoLuc luciferase and demonstrated that these viruses are applicable toin vitroandin vivoexperiments, suggesting that these recombinantFlaviviridaeviruses are powerful tools for increasing our understanding of viral life cycle and pathogenesis and that these recombinant viruses will provide a robust platform to develop antivirals againstFlaviviridaeviruses.

mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Ryan W. Bogard ◽  
Bryan W. Davies ◽  
John J. Mekalanos

ABSTRACTLysR-type transcriptional regulators (LTTRs) are the largest, most diverse family of prokaryotic transcription factors, with regulatory roles spanning metabolism, cell growth and division, and pathogenesis. Using a sequence-defined transposon mutant library, we screened a panel ofV. choleraeEl Tor mutants to identify LTTRs required for host intestinal colonization. Surprisingly, out of 38 LTTRs, only one severely affected intestinal colonization in the suckling mouse model of cholera: the methionine metabolism regulator, MetR. Genetic analysis of genes influenced by MetR revealed thatglyA1andmetJwere also required for intestinal colonization. Chromatin immunoprecipitation of MetR and quantitative reverse transcription-PCR (qRT-PCR) confirmed interaction with and regulation ofglyA1, indicating that misregulation ofglyA1is likely responsible for the colonization defect observed in themetRmutant. TheglyA1mutant was auxotrophic for glycine but exhibited wild-type trimethoprim sensitivity, making folate deficiency an unlikely cause of its colonization defect. MetJ regulatory mutants are not auxotrophic but are likely altered in the regulation of amino acid-biosynthetic pathways, including those for methionine, glycine, and serine, and this misregulation likely explains its colonization defect. However, mutants defective in methionine, serine, and cysteine biosynthesis exhibited wild-type virulence, suggesting that these amino acids can be scavenged in vivo. Taken together, our results suggest that glycine biosynthesis may be required to alleviate an in vivo nutritional restriction in the mouse intestine; however, additional roles for glycine may exist. Irrespective of the precise nature of this requirement, this study illustrates the importance of pathogen metabolism, and the regulation thereof, as a virulence factor.IMPORTANCEVibrio choleraecontinues to be a severe cause of morbidity and mortality in developing countries. Identification ofV. choleraefactors critical to disease progression offers the potential to develop or improve upon therapeutics and prevention strategies. To increase the efficiency of virulence factor discovery, we employed a regulator-centric approach to multiplex our in vivo screening capabilities and allow whole regulons inV. choleraeto be interrogated for pathogenic potential. We identified MetR as a new virulence regulator and serine hydroxymethyltransferase GlyA1 as a new MetR-regulated virulence factor, both required byV. choleraeto colonize the infant mouse intestine. Bacterial metabolism is a prerequisite to virulence, and current knowledge of in vivo metabolism of pathogens is limited. Here, we expand the known role of amino acid metabolism and regulation in virulence and offer new insights into the in vivo metabolic requirements ofV. choleraewithin the mouse intestine.


2019 ◽  
Vol 201 (23) ◽  
Author(s):  
Germán E. Piñas ◽  
John S. Parkinson

ABSTRACT Escherichia coli chemotaxis relies on control of the autophosphorylation activity of the histidine kinase CheA by transmembrane chemoreceptors. Core signaling units contain two receptor trimers of dimers, one CheA homodimer, and two monomeric CheW proteins that couple CheA activity to receptor control. Core signaling units appear to operate as two-state devices, with distinct kinase-on and kinase-off CheA output states whose structural nature is poorly understood. A recent all-atom molecular dynamic simulation of a receptor core unit revealed two alternative conformations, “dipped” and “undipped,” for the ATP-binding CheA.P4 domain that could be related to kinase activity states. To explore possible signaling roles for the dipped CheA.P4 conformation, we created CheA mutants with amino acid replacements at residues (R265, E368, and D372) implicated in promoting the dipped conformation and examined their signaling consequences with in vivo Förster resonance energy transfer (FRET)-based kinase assays. We used cysteine-directed in vivo cross-linking reporters for the dipped and undipped conformations to assess mutant proteins for these distinct CheA.P4 domain configurations. Phenotypic suppression analyses revealed functional interactions among the conformation-controlling residues. We found that structural interactions between R265, located at the N terminus of the CheA.P3 dimerization domain, and E368/D372 in the CheA.P4 domain played a critical role in stabilizing the dipped conformation and in producing kinase-on output. Charge reversal replacements at any of these residues abrogated the dipped cross-linking signal, CheA kinase activity, and chemotactic ability. We conclude that the dipped conformation of the CheA.P4 domain is critical to the kinase-active state in core signaling units. IMPORTANCE Regulation of CheA kinase in chemoreceptor arrays is critical for Escherichia coli chemotaxis. However, to date, little is known about the CheA conformations that lead to the kinase-on or kinase-off states. Here, we explore the signaling roles of a distinct conformation of the ATP-binding CheA.P4 domain identified by all-atom molecular dynamics simulation. Amino acid replacements at residues predicted to stabilize the so-called “dipped” CheA.P4 conformation abolished the kinase activity of CheA and its ability to support chemotaxis. Our findings indicate that the dipped conformation of the CheA.P4 domain is critical for reaching the kinase-active state in chemoreceptor signaling arrays.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Pedro Miramón ◽  
Andrew W. Pountain ◽  
Ambro van Hoof ◽  
Michael C. Lorenz

ABSTRACT Nutrient acquisition is a central challenge for all organisms. For the fungal pathogen Candida albicans, utilization of amino acids has been shown to be critical for survival, immune evasion, and escape, while the importance of catabolism of host-derived proteins and peptides in vivo is less well understood. Stp1 and Stp2 are paralogous transcription factors (TFs) regulated by the Ssy1-Ptr3-Ssy5 (SPS) amino acid sensing system and have been proposed to have distinct, if uncertain, roles in protein and amino acid utilization. We show here that Stp1 is required for proper utilization of peptides but has no effect on amino acid catabolism. In contrast, Stp2 is critical for utilization of both carbon sources. Commensurate with this observation, we found that Stp1 controls a very limited set of genes, while Stp2 has a much more extensive regulon that is partly dependent on the Ssy1 amino acid sensor (amino acid uptake and catabolism) and partly Ssy1 independent (genes associated with filamentous growth, including the regulators UME6 and SFL2). The ssy1Δ/Δ and stp2Δ/Δ mutants showed reduced fitness in a gastrointestinal (GI) colonization model, yet induced greater damage to epithelial cells and macrophages in a manner that was highly dependent on the growth status of the fungal cells. Surprisingly, the stp1Δ/Δ mutant was better able to colonize the gut but the mutation had no effect on host cell damage. Thus, proper protein and amino acid utilization are both required for normal host interaction and are controlled by an interrelated network that includes Stp1 and Stp2.


2019 ◽  
Vol 202 (6) ◽  
Author(s):  
Hector Gabriel Morales-Filloy ◽  
Yaqing Zhang ◽  
Gabriele Nübel ◽  
Shilpa Elizabeth George ◽  
Natalya Korn ◽  
...  

ABSTRACT Nicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5′ ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here, we report the occurrence of several NAD-RNAs in the opportunistic pathogen Staphylococcus aureus. Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium’s physiology, was found to be 5′ NAD capped in a range from 10 to 35%. NAD incorporation efficiency into RNAIII was found to depend in vivo on the −1 position of the P3 promoter. An increase in RNAIII’s NAD content led to a decreased expression of alpha- and delta-toxins, resulting in reduced cytotoxicity of the modified strains. These effects seem to be caused neither by changes in RNAIII’s secondary structure nor by a different translatability upon NAD attachment, as indicated by unaltered patterns in in vitro chemical probing and toeprinting experiments. Even though we did not observe any effect of this modification on RNAIII’s secondary structure or translatability in vitro, additional unidentified factors might account for the modulation of exotoxins in vivo. Ultimately, the study constitutes a step forward in the discovery of new roles of the NAD molecule in bacteria. IMPORTANCE Numerous organisms, including bacteria, are endowed with a 5′ NAD cap in specific RNAs. While the presence of the 5′ NAD cap modulates the stability of the modified RNA species, a significant biological function and phenotype have not been assigned so far. Here, we show the presence of a 5′ NAD cap in RNAIII from S. aureus, a dual-function regulatory RNA involved in quorum-sensing processes and regulation of virulence factor expression. We also demonstrate that altering the natural NAD modification ratio of RNAIII leads to a decrease in exotoxin production, thereby modulating the bacterium’s virulence. Our work unveils a new layer of regulation of RNAIII and the agr system that might be linked to the redox state of the NAD molecule in the cell.


2017 ◽  
Vol 91 (9) ◽  
Author(s):  
Regina Selb ◽  
Christian Derntl ◽  
Reinhard Klein ◽  
Beatrix Alte ◽  
Christoph Hofbauer ◽  
...  

ABSTRACT In this study, we describe the construction of the first genetically modified mutant of a halovirus infecting haloalkaliphilic Archaea. By random choice, we targeted ORF79, a currently uncharacterized viral gene of the haloalkaliphilic virus ϕCh1. We used a polyethylene glycol (PEG)-mediated transformation method to deliver a disruption cassette into a lysogenic strain of the haloalkaliphilic archaeon Natrialba magadii bearing ϕCh1 as a provirus. This approach yielded mutant virus particles carrying a disrupted version of ORF79. Disruption of ORF79 did not influence morphology of the mature virions. The mutant virus was able to infect cured strains of N. magadii, resulting in a lysogenic, ORF79-disrupted strain. Analysis of this strain carrying the mutant virus revealed a repressor function of ORF79. In the absence of gp79, onset of lysis and expression of viral proteins occurred prematurely compared to their timing in the wild-type strain. Constitutive expression of ORF79 in a cured strain of N. magadii reduced the plating efficiency of ϕCh1 by seven orders of magnitude. Overexpression of ORF79 in a lysogenic strain of N. magadii resulted in an inhibition of lysis and total absence of viral proteins as well as viral progeny. In further experiments, gp79 directly regulated the expression of the tail fiber protein ORF34 but did not influence the methyltransferase gene ORF94. Further, we describe the establishment of an inducible promoter for in vivo studies in N. magadii. IMPORTANCE Genetic analyses of haloalkaliphilic Archaea or haloviruses are only rarely reported. Therefore, only little insight into the in vivo roles of proteins and their functions has been gained so far. We used a reverse genetics approach to identify the function of a yet undescribed gene of ϕCh1. We provide evidence that gp79, a currently unknown protein of ϕCh1, acts as a repressor protein of the viral life cycle, affecting the transition from the lysogenic to the lytic state of the virus. Thus, repressor genes in other haloviruses could be identified by sequence homologies to gp79 in the future. Moreover, we describe the use of an inducible promoter of N. magadii. Our work provides valuable tools for the identification of other unknown viral genes by our approach as well as for functional studies of proteins by inducible expression.


2016 ◽  
Vol 45 (1) ◽  
pp. 38-44 ◽  
Author(s):  
S. Mohajer ◽  
R.M. Taha ◽  
S.Z. Azmi

Purpose – The purpose of this paper is to identify the most dominant pigment of pomegranate explants for natural color coatings and detect the presence of phytochemical constituents and comparison of the antioxidant activities. Design/methodology/approach – Extracts of leaf, stem, peel and seed of in vitro and in vivo growth cultures were prepared for phytochemical constituent and antioxidant activity. The supernatant from 95 per cent methanol was mixed with 15 per cent polyvinyl alcohol (PVA) with the ratio of 1:1 to form a coating system. Findings – Although glycosides was not found in this species, tests for tannins and flavonoids were positive in all samples. The IC50 values were also comparable to commercial antioxidant ascorbic acid with 34.92 per cent inhibition. Chlorophyll a and b were detected in stem and leaf using UV-photospectrometer in 420 and 645 nm wavelengths ranges. The effects of heat and salt on the stability of natural dye colorants mixed with polyvinyl alcohol to form a basic coating system were indicated negatively in in vivo and in vitro growth cultures. Originality/value – The paper shows that further improvement with co-pigmentations may give a notable mixture from pomegranate extraction for the paint materials or nail varnish. It was also indicated that pomegranate contains some compounds such as polyphenolics that can donate electron/hydrogen easily.


2013 ◽  
Vol 57 (9) ◽  
pp. 4463-4469 ◽  
Author(s):  
Christophe Isnard ◽  
Brigitte Malbruny ◽  
Roland Leclercq ◽  
Vincent Cattoir

ABSTRACTAs opposed toEnterococcus faecalis, which is intrinsically resistant to lincosamides, streptogramins A, and pleuromutilins (LSAP phenotype) by production of the ABC protein Lsa(A),Enterococcus faeciumis naturally susceptible. Since this phenotype may be selected forin vivoby quinupristin-dalfopristin (Q-D), the aim of this study was to investigate the molecular mechanism of acquired LSAP resistance inE. faecium. Six LSAP-resistantin vitromutants ofE. faeciumHM1070 as well as three different pairs of clinical isolates (pre- and postexposure to Q-D) were studied. The full genome sequence of anin vitromutant (E. faeciumUCN90B) was determined by using 454 sequencing technology and was compared with that of the parental strain. Single-nucleotide replacement was carried out to confirm the role of this mutation. By comparative genomic analysis, a point mutation was found within a 1,503-bp gene coding for an ABC homologue showing 66% amino acid identity with Lsa(A). This mutation (C1349T) led to an amino acid substitution (Thr450Ile). An identical mutation was identified in allin vitroandin vivoresistant strains but was not present in susceptible strains. The wild-type allele was namedeat(A) (forEnterococcusABCtransporter), and its mutated allelic variant was namedeat(A)v. The introduction ofeat(A)vfrom UCN90B into HM1070 conferred the LSAP phenotype, whereas that ofeat(A) from HM1070 into UCN90B restored susceptibility entirely. This is the first description of the molecular mechanism of acquired LSAP resistance inE. faecium. Characterization of the biochemical mechanism of resistance and the physiological role of this ABC protein need further investigations.


2016 ◽  
Vol 198 (23) ◽  
pp. 3186-3199 ◽  
Author(s):  
Amit Pathania ◽  
Arvind Kumar Gupta ◽  
Swati Dubey ◽  
Balasubramanian Gopal ◽  
Abhijit A. Sardesai

ABSTRACTArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export ofl-arginine (Arg) inEscherichia coliandl-lysine (Lys) and Arg inCorynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane ofE. coli, we have employed a combination of cysteine accessibilityin situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an Nin-Coutconfiguration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO functionin vivoand that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO functionin vivoand their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomerin vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit.IMPORTANCEThe orthologous proteins LysE ofC. glutamicumand ArgO ofE. colifunction as exporters of the basic amino acidsl-arginine andl-lysine and the basic amino acidl-arginine, respectively, and LysE can functionally substitute for ArgO when expressed inE. coli. Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology that is distinct from that reported for LysE, with substantial variation in the topological arrangement of the proximal one-third portions of the two exporters. Additional genetic andin silicostudies reveal the importance of (i) the cytoplasmic N-terminal domain, (ii) a pair of conserved aspartate residues, and (iii) potential intramolecular interactions in ArgO function and indicate that an Arg-translocating conduit is formed by a monomer of ArgO.


2002 ◽  
Vol 29 (10) ◽  
pp. 1131 ◽  
Author(s):  
Xiao-Ping Li ◽  
Alba Phippard ◽  
Jae Pasari ◽  
Krishna K. Niyogi

In land plants, photosystem II subunit S (PsbS) plays a key role in xanthophyll- and pH-dependent non-photochemical quenching (qE) of excess absorbed light energy. Arabidopsis thaliana (L.) Heynh. npq4 mutants are defective in the psbS gene and have impaired qE. Exactly how the PsbS protein is involved in qE is unclear, but it has been proposed that PsbS binds H+ and/or de-epoxidized xanthophylls in excess light as part of the qE mechanism. To identify amino acid residues that are important for PsbS function, we sequenced the psbS gene from eight npq4 point mutant alleles isolated by forward genetics screening, including two new alleles. In the four transmembrane helices of PsbS, several amino acid residues were found to affect the stability and/or function of the protein. By comparing the predicted amino acid sequences of PsbS from several plant species and studying the proposed topological structure of PsbS, eight possible H+-binding amino acid residues on the lumenal side of the protein were identified and then altered by site-directed mutagenesis in vitro. The mutant psbS genes were transformed into npq4-1, a psbS deletion mutant, to test the stability and function of the mutant PsbS proteins in�vivo. The results demonstrate that two conserved, protonatable amino acids, E122 and E226, are especially critical for the function of PsbS.


2008 ◽  
Vol 82 (19) ◽  
pp. 9739-9752 ◽  
Author(s):  
Shuji Sato ◽  
Eloisa Yuste ◽  
William A. Lauer ◽  
Eun Hyuk Chang ◽  
Jennifer S. Morgan ◽  
...  

ABSTRACT Here, we describe the evolution of antigenic escape variants in a rhesus macaque that developed unusually high neutralizing antibody titers to SIVmac239. By 42 weeks postinfection, 50% neutralization of SIVmac239 was achieved with plasma dilutions of 1:1,000. Testing of purified immunoglobulin confirmed that the neutralizing activity was antibody mediated. Despite the potency of the neutralizing antibody response, the animal displayed a typical viral load profile and progressed to terminal AIDS with a normal time course. Viral envelope sequences from week 16 and week 42 plasma contained an excess of nonsynonymous substitutions, predominantly in V1 and V4, including individual sites with ratios of nonsynonymous to synonymous substitution rates (dN/dS) highly suggestive of strong positive selection. Recombinant viruses encoding envelope sequences isolated from these time points remained resistant to neutralization by all longitudinal plasma samples, revealing the failure of the animal to mount secondary responses to the escaped variants. Substitutions at two sites with significant dN/dS values, one in V1 and one in V4, were independently sufficient to confer nearly complete resistance to neutralization. Substitutions at three additional sites, one in V4 and two in gp41, conferred moderate to high levels of resistance when tested individually. All the amino acid changes leading to escape resulted from single nucleotide substitutions. The observation that antigenic escape resulted from individual, single amino acid replacements at sites well separated in current structural models of Env indicates that the virus can utilize multiple independent pathways to rapidly achieve similar levels of resistance.


Sign in / Sign up

Export Citation Format

Share Document