scholarly journals Protective Role of the Virus-Specific Immune Response for Development of Severe Neurologic Signs in Simian Immunodeficiency Virus-Infected Macaques

1998 ◽  
Vol 72 (12) ◽  
pp. 9940-9947 ◽  
Author(s):  
Sieghart Sopper ◽  
Ursula Sauer ◽  
Susanne Hemm ◽  
Monika Demuth ◽  
Justus Müller ◽  
...  

ABSTRACT The pathogenesis of human immunodeficiency virus-associated motor and cognitive disorders is poorly understood. In this context both a protective and a harmful role of the immune system has been discussed. This question was addressed in the present study by correlating the occurrence of neurologic disease in simian immunodeficiency virus (SIV)-infected macaques with disease progression and the humoral and cellular intrathecal antiviral immune response. Overt neurologic signs consisting of ataxia and apathy were observed at a much higher frequency in rapid progressor animals (6 of 12) than in slow progressors (1 of 7). Whereas slow progressors mounted a strong antiviral antibody (Ab) response as evidenced by enzyme-linked immunosorbent and immunospot assays, neither virus-specific Ab titers nor Ab-secreting cells could be found in the cerebrospinal fluid (CSF) or brain parenchyma of rapid progressors. Similarly, increased infiltration of CD8+ T cells and cytotoxic T lymphocytes specific for viral antigens were detected only in the CSF of slow progressors. The finding that neurologic signs develop frequently in SIV-infected macaques in the absence of an antiviral immune response demonstrates that the immune system does not contribute to the development of motor disorders in these animals. Moreover, the lower incidence of neurologic symptoms in slow progressors with a strong intrathecal immune response suggests a protective role of the virus-specific immunity in immunodeficiency virus-induced central nervous system disease.

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 506
Author(s):  
José Manuel Pérez de la Lastra ◽  
Celia Andrés-Juan ◽  
Francisco J. Plou ◽  
Eduardo Pérez-Lebeña

SARS-CoV-2, the coronavirus triggering the disease COVID-19, has a catastrophic health and socioeconomic impact at a global scale. Three key factors contribute to the pathogenesis of COVID-19: excessive inflammation, immune system depression/inhibition, and a set of proinflammatory cytokines. Common to these factors, a central function of oxidative stress has been highlighted. A diversity of clinical trials focused predominantly on antioxidants are being implemented as potential therapies for COVID-19. In this study, we look at the role of zinc, glutathione, and polyphenols, as key antioxidants of possible medicinal or nutritional significance, and examine their role in the antiviral immune response induced by SARS-Cov-2. An unresolved question is why some people experience chronic COVID and others do not. Understanding the relationship between SARS-CoV-2 and the immune system, as well as the role of defective immune responses to disease development, would be essential to recognize the pathogenesis of COVID-19, the risk factors that affect the harmful consequences of the disease, and the rational design of successful therapies and vaccinations. We expect that our research will provide a novel perspective that contributes to the design of clinical or nutritional targets for the prevention of this pandemic.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1356
Author(s):  
Juan Carlos Chimal-Eguia

This work presents a mathematical model to investigate the current outbreak of the coronavirus disease 2019 (COVID-19) worldwide. The model presents the infection dynamics and emphasizes the role of the immune system: both the humoral response as well as the adaptive immune response. We built a mathematical model of delay differential equations describing a simplified view of the mechanism between the COVID-19 virus infection and the immune system. We conduct an analysis of the model exploring different scenarios, and our numerical results indicate that some theoretical immunotherapies are successful in eradicating the COVID-19 virus.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1783
Author(s):  
Anna Carrano ◽  
Juan Jose Juarez ◽  
Diego Incontri ◽  
Antonio Ibarra ◽  
Hugo Guerrero Cazares

Sex differences have been well identified in many brain tumors. Even though glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has the worst outcome, well-established differences between men and women are limited to incidence and outcome. Little is known about sex differences in GBM at the disease phenotype and genetical/molecular level. This review focuses on a deep understanding of the pathophysiology of GBM, including hormones, metabolic pathways, the immune system, and molecular changes, along with differences between men and women and how these dimorphisms affect disease outcome. The information analyzed in this review shows a greater incidence and worse outcome in male patients with GBM compared with female patients. We highlight the protective role of estrogen and the upregulation of androgen receptors and testosterone having detrimental effects on GBM. Moreover, hormones and the immune system work in synergy to directly affect the GBM microenvironment. Genetic and molecular differences have also recently been identified. Specific genes and molecular pathways, either upregulated or downregulated depending on sex, could potentially directly dictate GBM outcome differences. It appears that sexual dimorphism in GBM affects patient outcome and requires an individualized approach to management considering the sex of the patient, especially in relation to differences at the molecular level.


2021 ◽  
Vol 22 (9) ◽  
pp. 4438
Author(s):  
Jessica Proulx ◽  
Kathleen Borgmann ◽  
In-Woo Park

The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.


Author(s):  
Luis Sánchez-del-Campo ◽  
Román Martí-Díaz ◽  
María F. Montenegro ◽  
Rebeca González-Guerrero ◽  
Trinidad Hernández-Caselles ◽  
...  

Abstract Background The application of immune-based therapies has revolutionized cancer treatment. Yet how the immune system responds to phenotypically heterogeneous populations within tumors is poorly understood. In melanoma, one of the major determinants of phenotypic identity is the lineage survival oncogene MITF that integrates diverse microenvironmental cues to coordinate melanoma survival, senescence bypass, differentiation, proliferation, invasion, metabolism and DNA damage repair. Whether MITF also controls the immune response is unknown. Methods By using several mouse melanoma models, we examine the potential role of MITF to modulate the anti-melanoma immune response. ChIP-seq data analysis, ChIP-qPCR, CRISPR-Cas9 genome editing, and luciferase reporter assays were utilized to identify ADAM10 as a direct MITF target gene. Western blotting, confocal microscopy, flow cytometry, and natural killer (NK) cytotoxicity assays were used to determine the underlying mechanisms by which MITF-driven phenotypic plasticity modulates melanoma NK cell-mediated killing. Results Here we show that MITF regulates expression of ADAM10, a key sheddase that cleaves the MICA/B family of ligands for NK cells. By controlling melanoma recognition by NK-cells MITF thereby controls the melanoma response to the innate immune system. Consequently, while melanoma MITFLow cells can be effectively suppressed by NK-mediated killing, MITF-expressing cells escape NK cell surveillance. Conclusion Our results reveal how modulation of MITF activity can impact the anti-melanoma immune response with implications for the application of anti-melanoma immunotherapies.


2021 ◽  
pp. 1-10
Author(s):  
Bader Alshehri

Breast cancer being the most malignant and lethal disease persistent among women globally. Immunotherapy as a new treatment modality has emerged in understanding the loopholes in the treatment of breast cancer which is mainly attributed to the potential of tumor cells to evade and survive the immune response by developing various strategies. Therefore, improved understanding of the immune evasion by cancer cells and the monoclonal antibodies against PD- and PD-L1 can help us in the diagnosis of this malignancy. Here in this article, I have highlighted that in addition to focusing on other strategies for breast cancer treatment, the involvement of immune system in breast cancer is vital for the understanding of this malignancy. Further, the complete involvement of immune system in the relapse or recurrence of the breast tumor and have also highlighted the role of vaccines, PD-1 and CTLA-4 with the recent advances in the field. Moreover, in addition to the application of immunotherapy as a sole therapy, combinations of immunotherapy with various strategies like targeting it with MEK inhibitors, Vaccines, chemotherapy and PARP inhibitor has shown to have significant benefits is also discussed in this article.


Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


2012 ◽  
Vol 64 (9) ◽  
pp. 2878-2886 ◽  
Author(s):  
Hilène Lin ◽  
Marie-Dominique Ah Kioon ◽  
Claude Lalou ◽  
Jerome Larghero ◽  
Jean-Marie Launay ◽  
...  

2021 ◽  
Vol 10 (5) ◽  
pp. 1131
Author(s):  
Magdalena Chmielińska ◽  
Marzena Olesińska ◽  
Katarzyna Romanowska-Próchnicka ◽  
Dariusz Szukiewicz

Haptoglobin (Hp) is an acute phase protein which supports the immune response and protects tissues from free radicals. Its concentration correlates with disease activity in spondyloarthropathies (SpAs). The Hp polymorphism determines the functional differences between Hp1 and Hp2 protein products. The role of the Hp polymorphism has been demonstrated in many diseases. In particular, the Hp 2-2 phenotype has been associated with the unfavorable course of some inflammatory and autoimmune disorders. Its potential role in modulating the immune system in SpA is still unknown. This article contains pathophysiological considerations on the potential relationship between Hp, its polymorphism and SpA.


Author(s):  
Jonquil Marie Poret ◽  
Jessie J Guidry ◽  
Liz Simon ◽  
Patricia E. Molina

Effective antiretroviral therapy (ART) has significantly reduced mortality of people living with HIV (PLWH), and the prevalence of at-risk alcohol use is higher among PLWH. Increased survival and aging of PLWH is associated with increased prevalence of metabolic comorbidities especially among menopausal women, and adipose tissue metabolic dysregulation may be a significant contributing factor. We examined the differential effects of chronic binge alcohol (CBA) administration and ovariectomy (OVX) on the omental adipose tissue (OmAT) proteome in a subset of simian immunodeficiency virus (SIV)-infected macaques of a longitudinal parent study. Quantitative discovery-based proteomics identified 1429 differentially expressed proteins. Ingenuity Pathway Analysis (IPA) was used to calculate z-scores, or activation predictions, for functional pathways and diseases. Results revealed protein changes associated with functional pathways centered around the "OmAT metaboproteome profile". Based on z-scores, CBA did not affect functional pathways of metabolic disease but dysregulated proteins involved in AMPK signaling and lipid metabolism. OVX-mediated proteome changes were predicted to promote pathways involved in glucose- and lipid-associated metabolic disease. Proteins involved in apoptosis, necrosis, and reactive oxygen species (ROS) pathways were also predicted to be activated by OVX, and these were predicted to be inhibited by CBA. These results provide evidence for the role of ovarian hormone loss in mediating OmAT metaboproteome dysregulation in SIV and suggest that CBA modifies OVX-associated changes. In the context of OVX, CBA administration produced larger metabolic and cellular effects, which we speculate may reflect a protective role of estrogen against CBA-mediated adipose tissue injury in female SIV-infected macaques.


Sign in / Sign up

Export Citation Format

Share Document