scholarly journals SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis.

1993 ◽  
Vol 13 (7) ◽  
pp. 4039-4048 ◽  
Author(s):  
T Roemer ◽  
S Delaney ◽  
H Bussey

KRE6 encodes a predicted type II membrane protein which, when disrupted, results in a slowly growing, killer toxin-resistant mutant possessing half the normal level of a structurally wild-type cell wall (1-->6)-beta-glucan (T. Roemer and H. Bussey, Proc. Natl. Acad. Sci. USA 88:11295-11299, 1991). The mutant phenotype and structure of the KRE6 gene product, Kre6p, suggest that it may be a beta-glucan synthase component, implying that (1-->6)-beta-glucan synthesis in Saccharomyces cerevisiae is functionally redundant. To examine this possibility, we screened a multicopy genomic library for suppression of both the slow-growth and killer resistance phenotypes of a kre6 mutant and identified SKN1, which encodes a protein sharing 66% overall identity to Kre6p. SKN1 suppresses kre6 null alleles in a dose-dependent manner, though disruption of the SKN1 locus has no effect on killer sensitivity, growth, or (1-->6)-beta-glucan levels. skn1 kre6 double disruptants, however, showed a dramatic reduction in both (1-->6)-beta-glucan levels and growth rate compared with either single disruptant. Moreover, the residual (1-->6)-beta-glucan polymer in skn1 kre6 double mutants is smaller in size and altered in structure. Since single disruptions of these genes lead to structurally wild-type (1-->6)-beta-glucan polymers, Kre6p and Skn1p appear to function independently, possibly in parallel, in (1-->6)-beta-glucan biosynthesis.

1993 ◽  
Vol 13 (7) ◽  
pp. 4039-4048
Author(s):  
T Roemer ◽  
S Delaney ◽  
H Bussey

KRE6 encodes a predicted type II membrane protein which, when disrupted, results in a slowly growing, killer toxin-resistant mutant possessing half the normal level of a structurally wild-type cell wall (1-->6)-beta-glucan (T. Roemer and H. Bussey, Proc. Natl. Acad. Sci. USA 88:11295-11299, 1991). The mutant phenotype and structure of the KRE6 gene product, Kre6p, suggest that it may be a beta-glucan synthase component, implying that (1-->6)-beta-glucan synthesis in Saccharomyces cerevisiae is functionally redundant. To examine this possibility, we screened a multicopy genomic library for suppression of both the slow-growth and killer resistance phenotypes of a kre6 mutant and identified SKN1, which encodes a protein sharing 66% overall identity to Kre6p. SKN1 suppresses kre6 null alleles in a dose-dependent manner, though disruption of the SKN1 locus has no effect on killer sensitivity, growth, or (1-->6)-beta-glucan levels. skn1 kre6 double disruptants, however, showed a dramatic reduction in both (1-->6)-beta-glucan levels and growth rate compared with either single disruptant. Moreover, the residual (1-->6)-beta-glucan polymer in skn1 kre6 double mutants is smaller in size and altered in structure. Since single disruptions of these genes lead to structurally wild-type (1-->6)-beta-glucan polymers, Kre6p and Skn1p appear to function independently, possibly in parallel, in (1-->6)-beta-glucan biosynthesis.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 837-849 ◽  
Author(s):  
J L Brown ◽  
Z Kossaczka ◽  
B Jiang ◽  
H Bussey

Abstract Recessive mutations leading to killer resistance identify the KRE9, KRE10 and KRE11 genes. Mutations in both the KRE9 and KRE11 genes lead to reduced levels of (1-->6)-beta-glucan in the yeast cell wall. The KRE11 gene encodes a putative 63-kD cytoplasmic protein, and disruption of the KRE11 locus leads to a 50% reduced level of cell wall (1-->6)-glucan. Structural analysis of the (1-->6)-beta-glucan remaining in a kre11 mutant indicates a polymer smaller in size than wild type, but containing a similar proportion of (1-->6)- and (1-->3)-linkages. Genetic interactions among cells harboring mutations at the KRE11, KRE6 and KRE1 loci indicate lethality of kre11 kre6 double mutants and that kre11 is epistatic to kre1, with both gene products required to produce the mature glucan polymer at wild-type levels. Analysis of these KRE genes should extend knowledge of the beta-glucan biosynthetic pathway, and of cell wall synthesis in yeast.


2008 ◽  
Vol 52 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Gadi Borkow ◽  
Humberto H. Lara ◽  
Chandice Y. Covington ◽  
Adeline Nyamathi ◽  
Jeffrey Gabbay

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can be transmitted through breast-feeding and through contaminated blood donations. Copper has potent biocidal properties and has been found to inactivate HIV-1 infectivity. The objective of this study was to determine the capacity of copper-based filters to inactivate HIV-1 in culture media. Medium spiked with high titers of HIV-1 was exposed to copper oxide powder or copper oxide-impregnated fibers or passed through copper-based filters, and the infectious viral titers before and after treatment were determined. Cell-free and cell-associated HIV-1 infectivity was inhibited when exposed to copper oxide in a dose-dependent manner, without cytotoxicity at the active antiviral copper concentrations. Similar dose-dependent inhibition occurred when HIV-1 was exposed to copper-impregnated fibers. Filtration of HIV-1 through filters containing the copper powder or copper-impregnated fibers resulted in viral deactivation of all 12 wild-type or drug-resistant laboratory or clinical, macrophage-tropic and T-cell-tropic, clade A, B, or C, HIV-1 isolates tested. Viral inactivation was not strain specific. Thus, a novel means to inactivate HIV-1 in medium has been developed. This inexpensive methodology may significantly reduce HIV-1 transmission from “mother to child” and/or through blood donations if proven to be effective in breast milk or plasma and safe for use. The successful application of this technology may impact HIV-1 transmission, especially in developing countries where HIV-1 is rampant.


Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1282-1293 ◽  
Author(s):  
Keiko Sato ◽  
Nobuo Kido ◽  
Yukitaka Murakami ◽  
Charles I. Hoover ◽  
Koji Nakayama ◽  
...  

The periodontopathic bacterium Porphyromonas gingivalis forms pigmented colonies when incubated on blood agar plates as a result of accumulation of μ-oxo haem dimer on the cell surface. Gingipain–adhesin complexes are responsible for production of μ-oxo haem dimer from haemoglobin. Non-pigmented mutants (Tn6-5, Tn7-1, Tn7-3 and Tn10-4) were isolated from P. gingivalis by Tn4351 transposon mutagenesis [Hoover & Yoshimura (1994), FEMS Microbiol Lett 124, 43–48]. In this study, we found that the Tn6-5, Tn7-1 and Tn7-3 mutants carried Tn4351 DNA in a gene homologous to the ugdA gene encoding UDP-glucose 6-dehydrogenase, a gene encoding a putative group 1 family glycosyltransferase and a gene homologous to the rfa gene encoding ADP heptose-LPS heptosyltransferase, respectively. The Tn10-4 mutant carried Tn4351 DNA at the same position as that for Tn7-1. Gingipain activities associated with cells of the Tn7-3 mutant (rfa) were very weak, whereas gingipain activities were detected in the culture supernatants. Immunoblot and mass spectrometry analyses also revealed that gingipains, including their precursor forms, were present in the culture supernatants. A lipopolysaccharide (LPS) fraction of the rfa deletion mutant did not show the ladder pattern that was usually seen for the LPS of the wild-type P. gingivalis. A recombinant chimera gingipain was able to bind to an LPS fraction of the wild-type P. gingivalis in a dose-dependent manner. These results suggest that the rfa gene product is associated with biosynthesis of LPS and/or cell-surface polysaccharides that can function as an anchorage for gingipain–adhesin complexes.


2008 ◽  
Vol 54 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Tibor Simonics ◽  
Anna Maráz

The ATP sulphurylase gene of Schizosaccharomyces pombe has been cloned by complementation of cysteine auxotrophy of a selenate-resistant mutant, which supposedly had a defect in ATP sulphurylase. A sulphate nonutilizing (cysteine auxotrophic) and selenate-resistant mutant of S. pombe was transformed with a wild-type S. pombe genomic library and sulphate-utilizing clones were isolated. The open reading frame encoding the ATP sulphurylase enzyme was found to be responsible for the restoration of sulphate assimilation. Transformants became as sensitive for selenate as the wild-type strain and produced a comparable amount of ATP sulphurylase as the prototrophic strains. The cloned ATP sulphurylase gene (sua1) proved to be an efficient selection marker in an ARS vector, when different isogenic or nonisogenic S. pombe selenate-resistant mutants were used as cloning hosts. Complementation of sua1– mutations by sua1-bearing multicopy vectors functions as a useful dual positive and negative selection marker. The cloned sua1 gene also complemented the met3 (ATP sulphurylase deficient) mutation in Saccharomyces cerevisiae .


2007 ◽  
Vol 6 (9) ◽  
pp. 1618-1624 ◽  
Author(s):  
William Harold Witola ◽  
Choukri Ben Mamoun

ABSTRACT During its intraerythrocytic life cycle, the malaria parasite Plasmodium falciparum undergoes dramatic metabolic and morphological changes and multiplies to produce up to 36 new daughter parasites. This rapid multiplication of the parasite requires an active synthesis of new membranes. The major component of these membranes, phosphatidylcholine, is synthesized via two metabolic routes, the CDP-choline pathway, which uses host choline as a precursor, and the plant-like serine decarboxylase-phosphoethanolamine methyltransferase (SDPM) pathway, which uses host serine as a precursor. Here we provide evidence indicating that the activity of the SDPM pathway is regulated by the CDP-choline precursor, choline. We show that the phosphoethanolamine methyltransferase, Pfpmt, a critical enzyme in the SDPM pathway, is down-regulated at the transcriptional level as well as targeted for degradation by the proteasome in the presence of choline. Transcript analysis revealed that PfPMT transcription is repressed by choline in a dose-dependent manner. Immunoblotting, pulse-chase experiments, and immunoprecipitation studies demonstrated that Pfpmt degradation occurs not only in wild-type but also in transgenic parasites constitutively expressing Pfpmt. The proteasome inhibitor bortezomib inhibited choline-mediated Pfpmt degradation. These data provide the first evidence for metabolite-mediated transcriptional and proteasomal regulation in Plasmodium and will set the stage for the use of this system for conditional gene and protein expression in this organism.


2002 ◽  
Vol 87 (7) ◽  
pp. 3460-3466 ◽  
Author(s):  
Zongjuan Fang ◽  
Sijun Yang ◽  
Bilgin Gurates ◽  
Mitsutoshi Tamura ◽  
Evan Simpson ◽  
...  

Aromatase P450 (P450arom) is the key enzyme for the biosynthesis of estrogen that is essential for the growth of human endometriosis, a pathology characterized by endometrium-like tissue on the peritoneal surfaces of abdominal organs manifest by pelvic pain and infertility. Surgically transplanted autologous uterine tissue to ectopic sites on the peritoneum in mice has been used as an animal model to study endometriosis. Using this mouse model, we evaluated the roles of the P450arom gene and aromatase enzyme activity in the growth of endometriosis represented by ectopic uterine tissues in mice. Endometriosis was induced surgically in the following groups of mice: 1) untreated transgenic mice with disrupted P450arom gene (ArKO); 2) ArKO mice treated with systemic estrogen; 3) untreated wild-type (WT) mice; 4) WT mice treated with estrogen; 5) WT mice treated with the aromatase inhibitor, letrozole; and 6) WT mice treated with letrozole and estrogen. Each group contained eight mice; +/+ littermates of ArKO mice were used as WT controls. Treatment with estrogen increased the size of ectopic uterine tissues in ArKO and WT mice significantly. The ectopic uterine lesions in untreated and estrogen-treated ArKO mice were strikingly smaller than those in untreated and estrogen-treated WT controls, respectively. Systemic treatment of WT mice with letrozole significantly decreased the lesion size in a dose-dependent manner. The addition of estrogen to letrozole treatment increased the ectopic lesion size, although these lesions were significantly smaller than those in mice treated with estrogen only. As tissue controls, the effects of these conditions on normally located (eutopic) uterine tissue were evaluated. The effects of disruption of the P450arom gene and treatments with letrozole and estrogen seemed to be more profound on ectopic tissues, suggesting that ectopic tissues might be more sensitive to estrogen for growth. We conclude that both an intact P450arom gene and the presence of aromatase enzyme activity are essential for the growth of ectopic uterine tissue in a mouse model of endometriosis.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1456-1463 ◽  
Author(s):  
Karen L. Jones ◽  
Sascha C. Hughan ◽  
Sacha M. Dopheide ◽  
Richard W. Farndale ◽  
Shaun P. Jackson ◽  
...  

The functional importance of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) in platelets is unclear. Because PECAM-1 represents a newly assigned immunoglobulin–ITIM superfamily member expressed on the surface of platelets, it was hypothesized that it may play an important regulatory role in modulating ITAM-bearing receptors such as collagen (GP)VI receptor and FcγRIIA. To examine the functional role of PECAM-1 in regulating platelet-collagen interactions, 2 different approaches were applied using recombinant human PECAM-1–immunoglobulin chimeras and platelets derived from PECAM-1–deficient mice. Stimulation of platelets by collagen-, (GP)VI-selective agonist, collagen-related peptide (CRP)–, and PECAM-1–immunoglobulin chimera induced tyrosine phosphorylation of PECAM-1 in a time- and dose-dependent manner. Activation of PECAM-1 directly through the addition of soluble wild-type PECAM-1–immunoglobulin chimera, but not mutant K89A PECAM-1–immunoglobulin chimera that prevents homophilic binding, was found to inhibit collagen- and CRP-induced platelet aggregation. PECAM-1–deficient platelets displayed enhanced platelet aggregation and secretion responses on stimulation with collagen and CRP, though the response to thrombin was unaffected. Under conditions of flow, human platelet thrombus formation on a collagen matrix was reduced in a dose-dependent manner by human PECAM-1–immunoglobulin chimera. Platelets derived from PECAM-1–deficient mice form larger thrombi when perfused over a collagen matrix under flow at a shear rate of 1800 seconds−1 compared to wild-type mice. Collectively, these results indicate that PECAM-1 serves as a physiological negative regulator of platelet-collagen interactions that may function to negatively limit growth of platelet thrombi on collagen surfaces.


2021 ◽  
Vol 12 ◽  
Author(s):  
Inseok Hwang ◽  
Je-Wook Park ◽  
Oh-Seok Kwon ◽  
Byounghyun Lim ◽  
Myunghee Hong ◽  
...  

Background: The efficacy of antiarrhythmic drugs (AAD) can vary in patients with atrial fibrillation (AF), and the PITX2 gene affects the responsiveness of AADs. We explored the virtual AAD (V-AAD) responses between wild-type and PITX2+/−-deficient AF conditions by realistic in silico AF modeling.Methods: We tested the V-AADs in AF modeling integrated with patients' 3D-computed tomography and 3D-electroanatomical mapping, acquired in 25 patients (68% male, 59.8 ± 9.8 years old, 32.0% paroxysmal type). The ion currents for the PITX2+/− deficiency and each AAD (amiodarone, sotalol, dronedarone, flecainide, and propafenone) were defined based on previous publications.Results: We compared the wild-type and PITX2+/− deficiency in terms of the action potential duration (APD90), conduction velocity (CV), maximal slope of restitution (Smax), and wave-dynamic parameters, such as the dominant frequency (DF), phase singularities (PS), and AF termination rates according to the V-AADs. The PITX2+/−-deficient model exhibited a shorter APD90 (p < 0.001), a lower Smax (p < 0.001), mean DF (p = 0.012), PS number (p < 0.001), and a longer AF cycle length (AFCL, p = 0.011). Five V-AADs changed the electrophysiology in a dose-dependent manner. AAD-induced AFCL lengthening (p < 0.001) and reductions in the CV (p = 0.033), peak DF (p < 0.001), and PS number (p < 0.001) were more significant in PITX2+/−-deficient than wild-type AF. PITX2+/−-deficient AF was easier to terminate with class IC AADs than the wild-type AF (p = 0.018).Conclusions: The computational modeling-guided AAD test was feasible for evaluating the efficacy of multiple AADs in patients with AF. AF wave-dynamic and electrophysiological characteristics are different among the PITX2-deficient and the wild-type genotype models.


Genetics ◽  
1981 ◽  
Vol 97 (2) ◽  
pp. 307-325
Author(s):  
Robert H Waterston

ABSTRACT More than 30 independent suppressor mutations have been obtained in the nematode C. elegans through reversion analysis of two unc-13 mutants. Many of the new isolates map to the region of the previously identified informational suppressor, sup-5 III (Waterston and Brenner 1978). Several of the other suppressor mutations map to the left half of the X-linkage group and define a second suppressor gene, sup-7 X. In tests against 40 mutations in six genes, the sup-7(st5) allele was found to suppress to a greater extent the same alleles acted on by sup-5(e1464). Like sup-5(e1464), sup-7(st5) acts on null alleles of the myosin heavy-chain gene unc-54 I (MacLeod et al. 1977; MacLeod, Waterston and Brenner 1977) and the putative paramyosin gene unc-15 I (Waterston et al. 1977). Chemical analysis of unc-15(e1214); sup-7(st5) animals show that paramyosin is restored to more than 30% of the wild-type level. —As was observed for sup-5(e1464), suppression by sup-7(st5) is dose dependent and is greater in animals grown at 15° than at 25°. However, associated with this increased suppression is a decreased viability of sup-7(st5) homozygotes. Reversion of the lethality has resulted in the isolation of deficiency mutations that complement st5 lethality, but lack suppressor function. These properties of sup-7(st5) suggest that it, like sup-5(e1464), is an informational suppressor of null alleles, and its reversion via deficiencies further narrows the possible explanations of its action.


Sign in / Sign up

Export Citation Format

Share Document