scholarly journals Transcriptional analysis of multiple ovarian cancer cohorts reveals prognostic and immunomodulatory consequences of ERV expression

2021 ◽  
Vol 9 (1) ◽  
pp. e001519
Author(s):  
Marina Natoli ◽  
John Gallon ◽  
Haonan Lu ◽  
Ala Amgheib ◽  
David J Pinato ◽  
...  

BackgroundEndogenous retroviruses (ERVs) play a role in a variety of biological processes, including embryogenesis and cancer. DNA methyltransferase inhibitors (DNMTi)-induced ERV expression triggers interferon responses in ovarian cancer cells via the viral sensing machinery. Baseline expression of ERVs also occurs in cancer cells, though this process is poorly understood and previously unexplored in epithelial ovarian cancer (EOC). Here, the prognostic and immunomodulatory consequences of baseline ERV expression was assessed in EOC.MethodsERV expression was assessed using EOC transcriptional data from The Cancer Genome Atlas (TCGA) and from an independent cohort (Hammersmith Hospital, HH), as well as from untreated or DNMTi-treated EOC cell lines. Least absolute shrinkage and selection operator (LASSO) logistic regression defined an ERV expression score to predict patient prognosis. Immunohistochemistry (IHC) was conducted on the HH cohort. Combination of DNMTi treatment with γδ T cells was tested in vitro, using EOC cell lines and patient-derived tumor cells.ResultsERV expression was found to define clinically relevant subsets of EOC patients. An ERV prognostic score was successfully generated in TCGA and validated in the independent cohort. In EOC patients from this cohort, a high ERV score was associated with better survival (log-rank p=0.0009) and correlated with infiltration of CD8+PD1+T cells (r=0.46, p=0.0001). In the TCGA dataset, a higher ERV score was found in BRCA1/2 mutant tumors, compared to wild type (p=0.015), while a lower ERV score was found in CCNE1 amplified tumors, compared to wild type (p=0.019). In vitro, baseline ERV expression dictates the level of ERV induction in response to DNMTi. Manipulation of an ERV expression threshold by DNMTi resulted in improved EOC cell killing by cytotoxic immune cells.ConclusionsThese findings uncover the potential for baseline ERV expression to robustly inform EOC patient prognosis, influence tumor immune infiltration and affect antitumor immunity.

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1028
Author(s):  
Nikolaos Nikoleousakos ◽  
Panagiotis Dalezis ◽  
Aikaterini Polonifi ◽  
Elena G. Geromichalou ◽  
Sofia Sagredou ◽  
...  

We evaluated three newly synthesized B-lactam hybrid homo-aza-steroidal alkylators (ASA-A, ASA-B and ASA-C) for their PARP1/2 inhibition activity and their DNA damaging effect against human ovarian carcinoma cells. These agents are conjugated with an alkylating component (POPA), which also served as a reference molecule (positive control), and were tested against four human ovarian cell lines in vitro (UWB1.289 + BRCA1, UWB1.289, SKOV-3 and OVCAR-3). The studied compounds were thereafter compared to 3-AB, a known PARP inhibitor, as well as to Olaparib, a standard third-generation PARP inhibitor, on a PARP assay investigating their inhibitory potential. Finally, a PARP1 and PARP2 mRNA expression analysis by qRT-PCR was produced in order to measure the absolute and the relative gene expression (in mRNA transcripts) between treated and untreated cells. All the investigated hybrid steroid alkylators and POPA decreased in vitro cell growth differentially, according to the sensitivity and different gene characteristics of each cell line, while ASA-A and ASA-B presented the most significant anticancer activity. Both these compounds induced PARP1/2 enzyme inhibition, DNA damage (alkylation) and upregulation of PARP mRNA expression, for all tested cell lines. However, ASA-C underperformed on average in the above tasks, while the compound ASA-B induced synthetic lethality effects on the ovarian cancer cells. Nevertheless, the overall outcome, leading to a drug-like potential, provides strong evidence toward further evaluation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yaqing Zhang ◽  
Hongyun Gan ◽  
Fei Zhao ◽  
Xiaomei Ma ◽  
Xiaofeng Xie ◽  
...  

Background: Drug resistance is a major obstacle in chemotherapy for ovarian cancer, wherein the up regulation of drug-resistant genes plays an important role. The cytoplasmic polyadenylation element binding protein 4 (CPEB4) is an RNA binding protein that controls mRNA cytoplasmic polyadenylation and translation.Methods: The expression of CPEB4 in paclitaxel-resistant ovarian cancer cell lines and recurrent ovarian tumors relative to counterparts was determined by qRT-PCR, Western blotting and immunohistochemistry. The response to paclitaxel treatment was evaluated by cellular viability test and colony formation assay. RNA immunoprecipitation and poly(A) tail test were applied to examine the levels of RNA binding and cytoplasmic polyadenylation.Results: CPEB4 is elevated in paclitaxel-resistant ovarian cancer cells and recurrent ovarian tumors treated with paclitaxel-based chemotherapy. In addition, CPEB4 overexpression promotes paclitaxel resistance in ovarian cancer cells in vitro, and vice versa, CPEB4 knockdown restores paclitaxel sensitivity, indicating that CPEB4 confers paclitaxel resistance in ovarian cancer cells. Mechanistically, CPEB4 binds with the taxol (paclitaxel)-resistance-associated gene-3 (TRAG-3/CSAG2) mRNAs and induces its expression at a translational level. Moreover, CSAG2 expression is upregulated in paclitaxel-resistant ovarian carcinoma and cancer cell lines, and more importantly, siRNA-mediated CSAG2 knockdown overtly attenuates CPEB4-mediated paclitaxel resistance.Conclusion: This study suggests that the drug-resistant protein CSAG2 is translationally induced by CPEB4, which underlies CPEB4-promoted paclitaxel resistance in ovarian cancer in vitro. Thus, interfering CPEB4/CSAG2 axis might be of benefit to overcome paclitaxel-resistant ovarian cancer.


2019 ◽  
Author(s):  
Zhiqing Huang ◽  
Eiji Kondoh ◽  
Zachary Visco ◽  
Tsukasa Baba ◽  
Noriomi Matsumura ◽  
...  

ABSTRACTObjectiveOvarian cancer cells often exist in vivo as multicellular spheroids. Spheroid formation in vitro has been used to enrich for cancer stem cell populations from primary tumors. Such spheroids exhibit drug resistance and slow proliferation, suggesting involvement in disease recurrence. Our objectives were to characterize cancer spheroid phenotypes, determine gene expression profiles associated with spheroid forming capacity and to evaluate the responsiveness of spheroids to commonly used and novel therapeutic agents.MethodsTumorigenic potential was assessed using anchorage independent growth assays in 24 cell lines. Spheroids from cell lines (N=12) and from primary cancers (N=8) were grown on non-adherent tissue culture plates in serum-free media. Cell proliferation was measured using MTT assays and Ki67 immunostaining. Affymetrix HT U133A gene expression data was used to identify differentially expressed genes based on spheroid forming capacity. Matched monolayers and spheroids (N=7 pairs) were tested for response to cisplatin, paclitaxel and 7-hydroxystaurosporine (UCN-01) while mitochondrial inhibition was performed using oligomycin. Xenograft tumors from intraperitoneal injection of CAOV2-GFP/LUC ovarian cancer cells into nude mice were treated with carboplatin to reduce tumor burden followed by secondary treatment with carboplatin, UCN-01, or Oltipraz. Tumor formation and response was monitored using live imaging.ResultsOf 12 cell lines with increased anchorage-independent growth, 8 also formed spheroids under serum-free spheroid culture conditions. Spheroids showed reduced proliferation (p<0.0001) and Ki67 immunostaining (8% versus 87%) relative to monolayer cells. Spheroid forming capacity was associated with increased mitochondrial pathway activity (p ≤ 0.001). The mitochondrial inhibitors, UCN-01 and Oligomycin, demonstrated effectiveness against spheroids, while spheroids were refractory to cisplatin and paclitaxel. By live in vivo imaging, ovarian cancer xenograft tumors were reduced after primary treatment with carboplatin. Continued treatment with carboplatin was accompanied by an increase in tumor signal while there was little or no increase in tumor signal observed with subsequent treatment with UCN-01 or Oltipraz.ConclusionsOur findings suggest that the mitochondrial pathway in spheroids may be an important therapeutic target in preventing disease recurrence.


Author(s):  
Huan Yan ◽  
Hong Li ◽  
Pengyun Li ◽  
Xia Li ◽  
Jianjian Lin ◽  
...  

Abstract Background Long noncoding RNAs (LncRNAs) have been reported to be abnormally expressed in human ovarian cancer and associated with the proliferation and metastasis of cancer cells. The objective of this study was to investigate the role and the underlying mechanisms of LncRNA MAP3K20 antisense RNA 1 (MLK7-AS1) in ovarian cancer. Methods The expression level of MLK7-AS1 was investigated in human ovarian cancer tissues and cell lines. The effects of MLK7-AS1 knockdown on ovarian cancer cell proliferation, migration, invasion and apoptosis were evaluated in vitro using MTT, colony formation assays, wound healing assays, transwell assays and flow cytometry. Furthermore, the in vivo effects were determined using the immunodeficient NSG female mice. Luciferase reporter assays were employed to identify interactions among MLK7-AS1 and its target genes. Results In the current study, MLK7-AS1 was specifically upregulated in ovarian cancer tissues and cell lines. Knockdown of MLK7-AS1 inhibited the ability of cell migration, invasion, proliferation, colony formation and wound healing, whereas promoted cell apoptosis in vitro. By using online tools and mechanistic analysis, we demonstrated that MLK7-AS1 could directly bind to miR-375 and downregulate its expression. Besides, MLK7-AS1 reversed the inhibitory effect of miR-375 on the growth of ovarian cancer cells, which might be involved in the upregulation of Yes-associated protein 1 (YAP1) expression. Moreover, knockdown MLK7-AS1 expression inhibited primary tumor growth in ovary and metastatic tumors in multiple peritoneal organs including liver and spleen in vivo, which were partly abolished by miR-375 inhibition. Mechanically, we found that MLK7-AS1 modulated the epithelial-mesenchymal transition (EMT) process by interacting with miR-375/YAP1 both in vivo and vitro, which promoted the expression of Slug. Conclusions Taken together, our study showed for the first time that MLK7-AS1 interacted with miR-375 to promote proliferation, metastasis, and EMT process in ovarian cancer cells through upregulating YAP1.


2019 ◽  
Vol 11 (497) ◽  
pp. eaau7534 ◽  
Author(s):  
Alison Crawford ◽  
Lauric Haber ◽  
Marcus P. Kelly ◽  
Kristin Vazzana ◽  
Lauren Canova ◽  
...  

Advanced ovarian cancer is frequently treated with combination chemotherapy, but high recurrence rates show the need for therapies that can produce durable responses and extend overall survival. Bispecific antibodies that interact with tumor antigens on cancer cells and activating receptors on immune cells offer an innovative immunotherapy approach. Here, we describe a human bispecific antibody (REGN4018) that binds both Mucin 16 (MUC16), a glycoprotein that is highly expressed on ovarian cancer cells, and CD3, thus bridging MUC16-expressing cells with CD3+ T cells. REGN4018 induced T cell activation and killing of MUC16-expressing tumor cells in vitro. Binding and cytotoxicity of REGN4018 in vitro were minimally affected by high concentrations of CA-125, the shed form of MUC16, which is present in patients. In preclinical studies with human ovarian cancer cells and human T cells in immunodeficient mice, REGN4018 potently inhibited growth of intraperitoneal ovarian tumors. Moreover, in a genetically engineered immunocompetent mouse expressing human CD3 and human MUC16 [humanized target (HuT) mice], REGN4018 inhibited growth of murine tumors expressing human MUC16, and combination with an anti–PD-1 antibody enhanced this efficacy. Immuno-PET imaging demonstrated localization of REGN4018 in MUC16-expressing tumors and in T cell–rich organs such as the spleen and lymph nodes. Toxicology studies in cynomolgus monkeys showed minimal and transient increases in serum cytokines and C-reactive protein after REGN4018 administration, with no overt toxicity. Collectively, these data demonstrate potent antitumor activity and good tolerability of REGN4018, supporting clinical evaluation of REGN4018 in patients with MUC16-expressing advanced ovarian cancer.


MedComm ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 338-350
Author(s):  
Cuiyu Guo ◽  
E Dong ◽  
Qinhuai Lai ◽  
Shijie Zhou ◽  
Guangbing Zhang ◽  
...  

2018 ◽  
Author(s):  
F Guo ◽  
Z Yang ◽  
J Xu ◽  
J Sehouli ◽  
AE Albers ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Zofia Łapińska ◽  
Michał Dębiński ◽  
Anna Szewczyk ◽  
Anna Choromańska ◽  
Julita Kulbacka ◽  
...  

Estrogens (Es) play a significant role in the carcinogenesis and progression of ovarian malignancies. Depending on the concentration, Es may have a protective or toxic effect on cells. Moreover, they can directly or indirectly affect the activity of membrane ion channels. In the presented study, we investigated in vitro the effectiveness of the ovarian cancer cells (MDAH-2774) pre-incubation with 17β-estradiol (E2; 10 µM) in the conventional chemotherapy (CT) and electrochemotherapy (ECT) with cisplatin or calcium chloride. We used three different protocols of electroporation including microseconds (µsEP) and nanoseconds (nsEP) range. The cytotoxic effect of the applied treatment was examined by the MTT assay. We used fluorescent staining and holotomographic imaging to observe morphological changes. The immunocytochemical staining evaluated the expression of the caspase-12. The electroporation process’s effectiveness was analyzed by a flow cytometer using the Yo-Pro™-1 dye absorption assay. We found that pre-incubation of ovarian cancer cells with 17β-estradiol may effectively enhance the chemo- and electrochemotherapy with cisplatin and calcium chloride. At the same time, estradiol reduced the effectiveness of electroporation, which may indicate that the mechanism of increasing the effectiveness of ECT by E2 is not related to the change of cell membrane permeability.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 325
Author(s):  
Carolina Venturoli ◽  
Ilaria Piga ◽  
Matteo Curtarello ◽  
Martina Verza ◽  
Giovanni Esposito ◽  
...  

Pyruvate dehydrogenase kinase 1 (PDK1) blockade triggers are well characterized in vitro metabolic alterations in cancer cells, including reduced glycolysis and increased glucose oxidation. Here, by gene expression profiling and digital pathology-mediated quantification of in situ markers in tumors, we investigated effects of PDK1 silencing on growth, angiogenesis and metabolic features of tumor xenografts formed by highly glycolytic OC316 and OVCAR3 ovarian cancer cells. Notably, at variance with the moderate antiproliferative effects observed in vitro, we found a dramatic negative impact of PDK1 silencing on tumor growth. These findings were associated with reduced angiogenesis and increased necrosis in the OC316 and OVCAR3 tumor models, respectively. Analysis of viable tumor areas uncovered increased proliferation as well as increased apoptosis in PDK1-silenced OVCAR3 tumors. Moreover, RNA profiling disclosed increased glucose catabolic pathways—comprising both oxidative phosphorylation and glycolysis—in PDK1-silenced OVCAR3 tumors, in line with the high mitotic activity detected in the viable rim of these tumors. Altogether, our findings add new evidence in support of a link between tumor metabolism and angiogenesis and remark on the importance of investigating net effects of modulations of metabolic pathways in the context of the tumor microenvironment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Stasenko ◽  
Evan Smith ◽  
Oladapo Yeku ◽  
Kay J. Park ◽  
Ian Laster ◽  
...  

AbstractThe lectin, galectin-3 (Gal3), has been implicated in a variety of inflammatory and oncogenic processes, including tumor growth, invasion, and metastasis. The interactions of Gal3 and MUC16 represent a potential targetable pathway for the treatment of MUC16-expressing malignancies. We found that the silencing of Gal3 in MUC16-expressing breast and ovarian cancer cells in vitro inhibited tumor cell invasion and led to attenuated tumor growth in murine models. We therefore developed an inhibitory murine monoclonal anti–Gal3 carbohydrate-binding domain antibody, 14D11, which bound human and mouse Gal3 but did not bind human Galectins-1, -7, -8 or -9. Competition studies and a docking model suggest that the 14D11 antibody competes with lactose for the carbohydrate binding pocket of Gal3. In MUC16-expressing cancer cells, 14D11 treatment blocked AKT and ERK1/2 phosphorylation, and led to inhibition of cancer cell Matrigel invasion. Finally, in experimental animal tumor models, 14D11 treatment led to prolongation of overall survival in animals bearing flank tumors, and retarded lung specific metastatic growth by MUC16 expressing breast cancer cells. Our results provide evidence that antibody based Gal3 blockade may be a viable therapeutic strategy in patients with MUC16-expressing tumors, supporting further development of human blocking antibodies against Gal3 as potential cancer therapeutics.


Sign in / Sign up

Export Citation Format

Share Document