scholarly journals P03.31 Skin dendritic cells in melanoma are key for successful checkpoint blockade therapy

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A35.2-A36
Author(s):  
N Prokopi ◽  
CH Tripp ◽  
B Tummers ◽  
JC Crawford ◽  
M Efremova ◽  
...  

BackgroundImmunotherapy of cancer by checkpoint blockade has significantly improved the survival of melanoma patients. However, in patients with tumors that are poorly infiltrated by effector T cells the clinical results are not encouraging. Therefore, combination approaches that enhance pre-existing anti-tumor immunity and reset the patients‘ immunological status are urgently needed. In this study we used the tg(Grm1)EPv melanoma mouse model that reflects a non-immunogenic tumor microenvironment. In this mouse model, spontaneous melanoma development is driven by the ectopic expression of the metabotropic glutamate receptor-1 in melanocytes, which confers to them a hyperproliferative and anti-apoptotic phenotype. The same alteration has been shown to be present in 40% of melanoma patient samples. The aim of our study was to investigate whether enhancing dendritic cell (DC) numbers and function in the tg(Grm1)EPv mouse model could restore responsiveness to checkpoint blockade.Material and MethodsWe used multicolor flow cytometry, gene expression analysis by RNA-seq and microarray to analyze tumors and tumor-draining lymph nodes (tdLN). With various immunological in vitro and in vivo assays we determined the functional role of DC in tumor immunity.ResultsA loss of skin DC has previously been reported for primary melanoma lesions and we here show that melanoma progression in the tg(Grm1)EPv mouse model coincides with a gradual decrease in the skin cDC2 subset and an upregulation of the inhibitory ligands PD-L1 and galectin-9. Monotherapy with anti-PD-L1 could not delay tumor growth, suggesting that this is a good model to study resistance to checkpoint blockade. We hypothesized that by boosting DC numbers and function we would restore responsiveness to checkpoint blockade. By administering a treatment consisting of systemic Flt3L and intratumoral polyI:C/anti-CD40, we were able to rescue the numbers and function of skin cDC2. Analysis of the treated tumors by flow cytometry showed that the DC boost regimen led to an increased tumor infiltration of activated CD4+ and CD8+T cells. An in vitro T cell proliferation assay revealed that dermal cDC2 that had migrated to the tdLN, played a crucial role in this process, since these were able to cross-present endogenous gp100 antigen more efficiently than migratory Langerhans cells and dermal cDC1. CD4+ and CD8+T cells recruited in the tumors of the DC boost treated mice, expressed PD-1 and TIM-3. Therefore, combination therapy with checkpoint blockade of these molecules resulted in increased cytotoxic activity within the tumor and eventually delay of tumor growth.ConclusionsOur results demonstrate that skin DC shape the tumor microenvironment upon immunotherapy and thus, therapies that aim to enhance responsiveness to checkpoint blockade may well benefit from a component that boosts the numbers and the function of skin DC.Disclosure InformationN. Prokopi: None. C.H. Tripp: None. B. Tummers: None. J.C. Crawford: None. M. Efremova: None. K. Hutter: None. L. Bellmann: None. G. Cappellano: None. L. Boon: None. D. Ortner: None. Z. Trajanoski: None. S. Chen: None. T. de Gruijl: None. D.R. Green: None. P. Stoitzner: None.

Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2021 ◽  
Vol 9 (1) ◽  
pp. e000832
Author(s):  
Anastasia Prokopi ◽  
Christoph H Tripp ◽  
Bart Tummers ◽  
Florian Hornsteiner ◽  
Sarah Spoeck ◽  
...  

BackgroundImmunotherapy with checkpoint inhibitors has shown impressive results in patients with melanoma, but still many do not benefit from this line of treatment. A lack of tumor-infiltrating T cells is a common reason for therapy failure but also a loss of intratumoral dendritic cells (DCs) has been described.MethodsWe used the transgenic tg(Grm1)EPv melanoma mouse strain that develops spontaneous, slow-growing tumors to perform immunological analysis during tumor progression. With flow cytometry, the frequencies of DCs and T cells at different tumor stages and the expression of the inhibitory molecules programmed cell death protein-1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells were analyzed. This was complemented with RNA-sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR) analysis to investigate the immune status of the tumors. To boost DC numbers and function, we administered Fms-related tyrosine 3 ligand (Flt3L) plus an adjuvant mix of polyI:C and anti-CD40. To enhance T cell function, we tested several checkpoint blockade antibodies. Immunological alterations were characterized in tumor and tumor-draining lymph nodes (LNs) by flow cytometry, CyTOF, microarray and RT-qPCR to understand how immune cells can control tumor growth. The specific role of migratory skin DCs was investigated by coculture of sorted DC subsets with melanoma-specific CD8+ T cells.ResultsOur study revealed that tumor progression is characterized by upregulation of checkpoint molecules and a gradual loss of the dermal conventional DC (cDC) 2 subset. Monotherapy with checkpoint blockade could not restore antitumor immunity, whereas boosting DC numbers and activation increased tumor immunogenicity. This was reflected by higher numbers of activated cDC1 and cDC2 as well as CD4+ and CD8+ T cells in treated tumors. At the same time, the DC boost approach reinforced migratory dermal DC subsets to prime gp100-specific CD8+ T cells in tumor-draining LNs that expressed PD-1/TIM-3 and produced interferon γ (IFNγ)/tumor necrosis factor α (TNFα). As a consequence, the combination of the DC boost with antibodies against PD-1 and TIM-3 released the brake from T cells, leading to improved function within the tumors and delayed tumor growth.ConclusionsOur results set forth the importance of skin DC in cancer immunotherapy, and demonstrates that restoring DC function is key to enhancing tumor immunogenicity and subsequently responsiveness to checkpoint blockade therapy.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14544-e14544 ◽  
Author(s):  
Michal Abraham ◽  
Inbal Mishalian ◽  
Yaniv Harel ◽  
Shiri Klein ◽  
Yaron Pereg ◽  
...  

e14544 Background: Cancer cells affect their micro-environment by recruiting immune cells that support tumor growth, metastasis and inhibition of anti-tumor effector T and NK cell recruitment. In this study, we investigated the role of BL-8040, a CXCR4 antagonist in cancer immunotherapy and its ability to modulate the immunosuppressive tumor micro-environment. Methods: The effect of BL8040 on tumor micro-environment was tested in 3 different cancer mouse models: lung cancer, pancreatic cancer and melanoma. The mobilization of immune cells to the periphery in response to BL8040 was tested, as well as the accumulation of immune cells both within and surrounding the tumor in the pancreatic cancer mouse model. Results: BL8040 was found to be a potent and robust mobilizer of immune cells. Immunophenotyping of the mobilized cells revealed that the mobilization of CD4 and CD8 T lymphocytes, as well as of dendritic cells (DC), was significantly increased in the cancer-bearing mice compared to their naïve counterparts. Importantly, a significant mobilization of effector CD8 T cells and activated CD8 T cells in the cancer-bearing mice was also detected following BL8040 treatment. Concomitantly, in the pancreatic cancer mouse model, treatment with BL8040 increased CD8 T cell accumulation within the tumor and inhibited tumor growth. Conclusions: The immune cell population that is mobilized in response to BL8040 treatment is different in cancer mouse models and naïve mice. The ability of BL8040 to induce mobilization of leukocytes, cytotoxic and activated CD8 T cells and DCs is affected by the presence of a tumor. In our models of pancreatic cancer, mobilization of immune cells from the bone marrow into the circulation and their accumulation within the tumor and tumor microenvironment resulted in inhibition of tumor growth. These results indicate that BL8040 may affect the tumor microenvironment and therefore can potentially synergize with immunomodulatory agents. In vivo pre-clinical studies as well as clinical studies are currently ongoing for testing the combination of BL8040 with immunomodulatory agents in different cancer models.


2021 ◽  
Author(s):  
Kanako Yokomizo ◽  
Kayoko Waki ◽  
Miyako Ozawa ◽  
Keiko Yamamoto ◽  
Sachiko Ogasawara ◽  
...  

Abstract High mobility group box 1 (HMGB1) has been reported as a damage-associated molecular pattern (DAMP) molecule that is released from damaged or dead cells and induces inflammation and subsequent innate immunity. However, the role of HMGB1 in the anti-tumor immunity is unclear since inflammation in the tumor microenvironment also contributes to tumor promotion and progression. In the present study, we established HMGB1-knockout clones from B16F10 and CT26 murine tumors by genome editing using the CRISPR/Cas9 system and investigated the role of HMGB1 in anti-tumor immunity. We found that 1) knockout of HMGB1 in the tumor cells suppressed in vivo, but not in vitro, tumor growth, 2) the suppression of the in vivo tumor growth was mediated by CD8 T cells, and 3) infiltration of CD8 T cells, macrophages and dendritic cells into the tumor tissues was accelerated in HMGB1-knockout tumors. These results demonstrated that knockout of HMGB1 in tumor cells converted tumors from poor infiltration of immune cells called “cold” to “immune-inflamed” or “hot” and inhibited in vivo tumor growth mediated by cytotoxic T lymphocytes. Infiltration of immune cells to the tumor microenvironment is an important step in the series known as the cancer immunity cycle. Thus, manipulation of tumor-derived HMGB1 might be applicable to improve the clinical outcomes of cancer immunotherapies, including immune checkpoint blockades and cancer vaccine therapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiangyu Wang ◽  
Fengmian Wang ◽  
Zhi-Gang Zhang ◽  
Xiao-Mei Yang ◽  
Rong Zhang ◽  
...  

Serine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 was significantly downregulated in OC patients, and the low STK3 expression was correlated with a poor prognosis. In vitro cell proliferation, apoptosis, and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the roles of STK3. The overexpression of STK3 significantly inhibited cell proliferation, apoptosis, and migration of ovarian cancer cells in vitro and tumor growth in vivo. Bisulfite sequencing PCR analysis was performed to validate the methylation of STK3 in ovarian cancer. RNA sequencing and gene set enrichment analysis (GSEA) were used to compare the transcriptome changes in the STK3 overexpression ovarian cancer and control cells. The signaling pathway was analyzed by western blotting. STK3 promoted the migration of CD8+ T-cells by activating nuclear transcription factor κB (NF-κB) signaling. STK3 is a potential predictor of OC. It plays an important role in suppressing tumor growth of ovarian cancer and in chemotaxis of CD8+ T-cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5256-5256
Author(s):  
Doug Cipkala ◽  
Kelly McQuown ◽  
Lindsay Hendey ◽  
Michael Boyer

Abstract The use of cytotoxic T-lymphocytes (CTL) has been attempted experimentally with various tumors to achieve disease control. Factors that may influence GVT include CTL cytotoxicity, ability to home to disease sites, and survival of T cells in the host. The objective of our study is to evaluate the GVL effects of human alloreactive CTL against ALL in a chimeric NOD/scid mouse model. CTL were generated from random blood donor PBMCs stimulated with the 697 human ALL cell line and supplemented with IL-2, -7, or -15. CTL were analyzed for in vitro cytotoxicity against 697 cells, phenotype, and in vitro migration on day 14. NOD/scid mice were injected with 107 697 ALL cells followed by 5x106 CTL. Mice were sacrificed seven days following CTL injection and residual leukemia was measured in the bone marrow and spleen via flow cytometry. The ratios of CD8/CD4 positive T cells at the time of injection were 46/21% for IL-2, 52/31% for IL-7, and 45/14% for IL-15 cultured CTL (n=13). Control mice not receiving CTL had a baseline leukemia burden of 2.01% and 0.15% in the bone marrow and spleen, respectively (n=15). Mice treated with IL-15 cultured CTL had a reduction in tumor burden to 0.2% (n=13, p=0.01) and 0.05% (n=13, p=0.01) in bone marrow and spleen, respectively. Those treated with IL-2 or IL-7 cultured CTL showed no significant difference in leukemia burden in either the bone marrow (IL-2 1.28%, Il-7 5.97%) or spleen (IL-2 0.4%, IL-7 0.33%). No residual CTL could be identified in the bone marrow or spleen at the time of sacrifice in any CTL group. CTL grown in each cytokine resulted in similar in vitro cytotoxicity at an effector:target ratio of 10:1 (IL-2 41.3%, IL-7 37.7%, IL-15 45.3%, n=12–15, p>0.05 for all groups) and had statistically similar intracellular perforin and granzyme-B expression. In vitro CTL migration to a human mesenchymal stem cell line was greatest with IL-15 CTL (30.5%, n=4), followed by IL-7 CTL (18.9%, n=4), and least in IL-2 CTL (17.9%, n=4), though the differences were not significant. In vitro CTL migration was analyzed to an SDF-1α gradient as CXCR4/SDF-1α interactions are necessary for hematopoietic progenitor cell homing to the bone marrow. IL-15 cultured CTL showed the highest migration (48.8%, n=8) as compared to IL-2 (21.7%, n=6, p=0.048) or IL-7 CTL (35.9%, n=8, p>0.05). However, surface expression of CXCR4 measured by flow cytometry was significantly higher in IL-7 CTL (89.4%, n=9) compared to IL-2 CTL (52.2%, n=9, p<0.001) and IL-15 CTL (65.4%, n=10, p=0.002). Experiments are currently underway to further evaluate the role of CXCR4/SDF-1α in GVL. Preliminary in vivo experiments do not suggest any significant differences in CTL engraftment when evaluated at 24 hours post injection. Expression of the anti-apoptotic bcl-2 protein was greatest on IL-7 (MFI=5295, n=13) and IL-15 (MFI=4865, n=14) when compared to IL-2 CTL (MFI=3530, n=13, p=0.02 vs. IL-7, p=0.05 vs. IL-15), suggesting an increased in vivo survival ability. We hypothesize that IL-15 cultured CTL have greater GVL effects due to either higher in vivo survival, greater bone marrow homing efficiency, or both. Future experiments are planned to evaluate in vivo administration of IL-2 to enhance CTL survival in the host. In conclusion, IL-15 cultured CTL had significantly greater in vivo GVL effects compared to IL-2 and IL-7 CTL in the NOD/scid mouse model. This model can be utilized to evaluate the mechanism of T cell mediated GVL against ALL and potentially other human malignancies.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3822-3822
Author(s):  
Mobin Karimi ◽  
Martha Jordon ◽  
Taku Kambayashi

Abstract In allogeneic hematopoietic stem cell transplantation (HSCT), devising new strategies to separate GVHD and GVL responses is of critical importance. However, this is a difficult task, as GVHD and GVL rely on the same recognition of allogeneic MHC by donor-derived T cells. CD8+ T cells are key effector cells that mediate both GVHD and GVL. In mouse models of allogeneic HSCT, the infusion of donor-derived CD8+ T cells eliminates tumor growth but also causes severe GVHD. The activation of CD8+ T cells can be potentially manipulated by perturbing the signaling pathways downstream of the T cell receptor (TCR). TCR signaling depends on the formation of a proximal multimolecular complex, which is nucleated by adaptor proteins such as SLP-76. The phosphorylation of the Y145 residue of SLP-76 is critical for activation of the downstream enzyme PLCg1. As such, a YàF mutation at Y145 of SLP-76 (Y145F) causes decreased TCR-mediated signaling and attenuated T cell function. Here, we investigated how the SLP-76 Y145F mutation in CD8+T cells may impact GVHD and GVL responses in a mouse model of allogeneic HSCT. We employed a major MHC-mismatch mouse model of GVHD involving the transplantation of C57BL/6 (B6)-derived bone marrow (BM) into lethally irradiated Balb/c mice (B6àBalb/c). BM-transplanted mice were also injected with FACS-sorted CD8+ T cells either B6 wildtype (WT) mice or Y145F mice. Recipients of Y145F CD8+ T cells showed significantly (p<0.001) less weight loss, lower clinical score, and improved survival compared to mice injected with WT CD8+ T cells. Next, to determine whether the Y145F CD8+ T cells could mediate GVL effects, BM-transplanted Balb/c mice were additionally challenged intravenously with 1 x 105 luciferase-positive A20 leukemia cells. As expected, BM-transplanted Balb/c mice succumbed from A20 tumor growth, whereas mice injected with WT CD8+ T cells cleared the tumor but developed GVHD. Surprisingly, mice receiving Y145F CD8+ T cells eradicated the leukemic cells but did not develop GVHD. These data suggest that the Y145F mutation in CD8+T cells may be able to separate GVHD from GVL effects. In addition to defective TCR signaling observed in peripheral T cells of Y145F mice, a majority of Y145F KI CD8+ T cells adopt a memory-like CD44hi phenotype through exposure to high levels of IL-4 produced in the thymus of these mice. To test whether the CD44hi CD8+ T cell phenotype was necessary and/or sufficient for the separation of GVHD and GVL effects, BM-transplanted Balb/c mice were injected with FACS-sorted CD44hi or CD44lo CD8+ T cells from WT or Y145F KI mice and challenged with A20 leukemia cells. While BM-transplanted mice receiving CD44hi CD8+ T cells from Y145F mice displayed intact GVL responses without causing GVHD, mice injected with CD44lo CD8+ T cells from Y145F mice displayed impaired ability to clear the tumor cells. Moreover, recipients of CD44hi or CD44lo CD8+ T cells from WT mice cleared the tumor but exhibited severe GVHD. These findings were corroborated with data obtained with an inducible system, whereby CD8+ T cells are affected by the Y145F mutation only after full maturation and thus do not display a CD44hi phenotype (Y145F conditional knock-in mice). Bone marrow-transplanted recipients receiving Y145F conditional knock-in CD8+ T cells developed GVHD and exhibited an attenuated GVL response, suggesting that the Y145F mutation needed to be present during T cell development. Together, these data suggest that either the Y145F mutation or CD44hi phenotype alone in CD8+T cells is insufficient to separate GVHD from GVT. Our data demonstrate that perturbation of the TCR signaling pathway downstream of Y145 of SLP-76 in CD8+ T cells results in separation of GVHD from GVL effects. Experiments to mechanistically test how the Y145F signaling mutation synergizes with the CD44hi phenotype of CD8+ T cells to allow for the separation of the GVHD and GVL effects are currently underway. Our novel and unexpected finding could lead to a novel therapeutic strategy for treatment of acute GVHD after allogeneic HSCT. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document