Analysis of the internal stability of granular soils using different methods

2014 ◽  
Vol 51 (9) ◽  
pp. 1063-1072 ◽  
Author(s):  
N. Moraci ◽  
M.C. Mandaglio ◽  
D. Ielo

The knowledge of the internal stability of granular soils is a key factor in the design of granular or geotextile filters. To evaluate the internal stability of granular soils, different semi-empirical methods are generally used. Nevertheless, the results of these methods, on the same soil, can lead to different internal stability evaluations. In this paper, to evaluate the reliability of the semi-empirical methods available in literature, the internal stability of different granular soils, reconstituted by the authors and by other researchers, has been studied by means of theoretical and experimental approaches. In particular, the theoretical analysis of the internal stability was performed using the Simulfiltr method, developed recently by the authors, while the experimental evaluation of the internal stability was carried out by means of long-term filtration tests. The comparison of the internal stability analysis performed by means of semi-empirical, theoretical, and experimental methods showed that the semi-empirical methods are not always reliable. Therefore, on the base of these results, a new chart, in terms of minimum slope Smin (%) of the grain-size distribution and of average value of finer percentage F, has been proposed to evaluate the internal stability of granular soils.

2011 ◽  
Vol 12 (3) ◽  
Author(s):  
Abdulkareem Shafiq Mahdi Al-Obaidi

This paper introduces an attempt to enhance the accuracy of panel methods. A low-order panel method is selected and coupled with semi-empirical methods to enhance the accuracy of drag prediction of flying bodies at supersonic speeds. The semi-empirical methods are used to improve the accuracy of drag prediction by mathematical modelling of viscosity, base drag, and drag due to wing-body interference. Both methods were implemented by a computer program and validated against experimental and analytical results. The comparisons show that a considerable improvement has been achieved for the selected panel method for prediction of drag coefficients. In general, accuracy within an average value of -4.4% was obtained for the enhanced panel method. Such accuracy could be considered acceptable for the preliminary design stages of supersonic flying bodies such as projectiles and missiles. The developed computer program gives satisfactory results as long as the considered configurations are slender and the angles of attack are small (below stall angle).  ABSTRAK: Kertas kerja ini memperkenalkan percubaan untuk  mempertingkatkan ketepatan kaedah panel. Kaedah panel tertib rendah telah dipilih dan digabungkan dengan kaedah separa empirik untuk mempertingkatkan ketepatan ramalan seret objek terbang pada kelajuan supersonik. Kaedah semi empirikal yang digunakan untuk meningkatkan ketepatan jangkaan seret menggunakan model matematik bagi kelikatan, seretan dasar, dan  seretan disebabkan  oleh badan sayap interferens. Kedua-dua kaedah dijalankan menggunakan program komputer dan disah berdasarkan keputusan uji kaji dan analisis. Perbandingan keputusan menunjukkan peningkatan yang mendadak diperolehi melalui kaedah panel yang telah dipilih sebagai jangkaan pekali seret. Secara umumnya, ketepatan yang melingkungi nilai purata sebanyak -4.4% telah diperolehi daripada kaedah peningkatan panel. Keputusan sebegini boleh diterima untuk peringkat reka bentuk permulaan bagi objek terbang supersonik seperti projektil dan misil. Program komputer yang direka memberikan keputusan yang memuaskan selagi konfigurasi yang dipilih adalah kecil dan sudut serangan adalah rendah (di bawah sudut tegun).


Author(s):  
J. E. Laffoon ◽  
R. L. Anderson ◽  
J. C. Keller ◽  
C. D. Wu-Yuan

Titanium (Ti) dental implants have been used widely for many years. Long term implant failures are related, in part, to the development of peri-implantitis frequently associated with bacteria. Bacterial adherence and colonization have been considered a key factor in the pathogenesis of many biomaterial based infections. Without the initial attachment of oral bacteria to Ti-implant surfaces, subsequent polymicrobial accumulation and colonization leading to peri-implant disease cannot occur. The overall goal of this study is to examine the implant-oral bacterial interfaces and gain a greater understanding of their attachment characteristics and mechanisms. Since the detailed cell surface ultrastructure involved in attachment is only discernible at the electron microscopy level, the study is complicated by the technical problem of obtaining titanium implant and attached bacterial cells in the same ultra-thin sections. In this study, a technique was developed to facilitate the study of Ti implant-bacteria interface.Discs of polymerized Spurr’s resin (12 mm x 5 mm) were formed to a thickness of approximately 3 mm using an EM block holder (Fig. 1). Titanium was then deposited by vacuum deposition to a film thickness of 300Å (Fig. 2).


Geotecnia ◽  
2015 ◽  
Vol 135 ◽  
pp. 89-113
Author(s):  
Jean Felix Cabette ◽  
◽  
<br>Heloisa Helena Silva Gonçalves ◽  
<br>Fernando Antônio Marinho ◽  
◽  
...  

Author(s):  
Rodrigo Cueva ◽  
Guillem Rufian ◽  
Maria Gabriela Valdes

The use of Customer Relationship Managers to foster customers loyalty has become one of the most common business strategies in the past years.  However, CRM solutions do not fill the abundance of happily ever-after relationships that business needs, and each client’s perception is different in the buying process.  Therefore, the experience must be precise, in order to extend the loyalty period of a customer as much as possible. One of the economic sectors in which CRM’s have improved this experience is retailing, where the personalized attention to the customer is a key factor.  However, brick and mortar experiences are not enough to be aware in how environmental changes could affect the industry trends in the long term.  A base unified theoretical framework must be taken into consideration, in order to develop an adaptable model for constructing or implementing CRMs into companies. Thanks to this approximation, the information is complemented, and the outcome will increment the quality in any Marketing/Sales initiative. The goal of this article is to explore the different factors grouped by three main domains within the impact of service quality, from a consumer’s perspective, in both on-line and off-line retailing sector.  Secondly, we plan to go a step further and extract base guidelines about previous analysis for designing CRM’s solutions focused on the loyalty of the customers for a specific retailing sector and its product: Sports Running Shoes.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 81
Author(s):  
Nisrin El Mlili ◽  
Hanan Ahabrach ◽  
Omar Cauli

Cortisol is the end product of the hypothalamic-pituitary-adrenal (HPA) axis, and its production is increased mainly in stressful situations or in chronic disorders accompanied by stress enhancement. Altered cortisol concentrations have been reported in a number of neuropsychiatric diseases and sleep disorders. Cortisol concentrations have been measured using several methods, and in several matrixes, such as blood, saliva, and urine. However, lately, hair cortisol, for several reasons, has emerged as a promising biomarker of long-term retrospective HPA activation. Several experimental approaches for cortisol measurement with the corresponding concentration reference ranges and a summary of findings from scientific literature on this field are presented. There is evidence of a close relationship between HPA functional alteration and the development of neuropsychiatric disorders. Sleep disorders are the most common manifestation in several neuropsychiatric conditions, and have also been associated to cortisol alterations in both adults and children. Many studies indicate that hair cortisol constitutes a valuable tool for further contributing to existing data on salivary, plasma, or urinary cortisol concentrations in patients with sleep disorders.


Author(s):  
Elżbieta Szczygieł ◽  
Agata Gigoń ◽  
Izabela Cebula Chudyba ◽  
Golec Joanna ◽  
Golec Edward

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural spine deformity affecting 2%–4% of adolescents. Due to the unknown cause of idiopathic scoliosis, its therapy is a long-term and often unsatisfactory process. In the literature, it is often suggested that problems related to the feeling of one’s own body are caused by AIS. OBJECTIVE: The aim of this study was to assess the feeling of one’s own body among children with and without scoliosis on the example of feeling the head position, pelvis shape and balance. METHOD: The research included 62 children: 30 with scoliosis and 25 without diagnosed scoliosis with an age range between 11 to 19 years. The minimum scoliosis value was 7∘ and the maximum was 53∘. The average value was 25∘. During the study, three functional tests were used: Cervical Joint Position Error Test (CJPET), Clinical Test of Sensory Integration on Balance (CTSIB) and Body proportion demonstration test (BPDT). RESULTS: The results of the tests showed statistically significant differences (CJPET p= 3.54* 10-14, CTSIB p= 0.0376, BPDT p= 0.0127). However, none of the studies showed a correlation between the results of people with scoliosis and the value of their Cobb angles.


2014 ◽  
Vol 12 (2) ◽  
pp. 153-163
Author(s):  
Viktor Anishchenko ◽  
Vladimir Rybachenko ◽  
Konstantin Chotiy ◽  
Andrey Redko

AbstractDFT calculations of vibrational spectra of chlorophosphates using wide range of basis sets and hybrid functionals were performed. Good agreement between calculated and experimental vibrational spectra was reached by the combination of non-empirical functional PBE0 with both middle and large basis sets. The frequencies of the stretching vibrations of the phosphate group calculated using semi-empirical functional B3LYP for all basis sets deviate significantly from the experimental values. The number of polarization functions on heavy atoms was shown to be a key factor for the calculation of vibrational frequencies of organophosphates. The importance of consideration of all the stable rotamers for a complete assignment of fundamental modes was shown.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giansimone Perrino ◽  
Sara Napolitano ◽  
Francesca Galdi ◽  
Antonella La Regina ◽  
Davide Fiore ◽  
...  

AbstractThe cell cycle is the process by which eukaryotic cells replicate. Yeast cells cycle asynchronously with each cell in the population budding at a different time. Although there are several experimental approaches to synchronise cells, these usually work only in the short-term. Here, we build a cyber-genetic system to achieve long-term synchronisation of the cell population, by interfacing genetically modified yeast cells with a computer by means of microfluidics to dynamically change medium, and a microscope to estimate cell cycle phases of individual cells. The computer implements a controller algorithm to decide when, and for how long, to change the growth medium to synchronise the cell-cycle across the population. Our work builds upon solid theoretical foundations provided by Control Engineering. In addition to providing an avenue for yeast cell cycle synchronisation, our work shows that control engineering can be used to automatically steer complex biological processes towards desired behaviours similarly to what is currently done with robots and autonomous vehicles.


2021 ◽  
Author(s):  
Hao Xu ◽  
Xu Lian ◽  
Ingrid Slette ◽  
Hui Yang ◽  
Yuan Zhang ◽  
...  

Abstract The timing and length of the dry season is a key factor governing ecosystem productivity and the carbon cycle of the tropics. Mounting evidence has suggested a lengthening of the dry season with ongoing climate change. However, this conclusion is largely based on changes in precipitation (P) compared to its long-term average (P ̅) and lacks consideration of the simultaneous changes in ecosystem water demand (measured by potential evapotranspiration, Ep, or actual evapotranspiration, E). Using several long-term (1979-2018) observational datasets, we compared changes in tropical dry season length (DSL) and timing (dry season arrival, DSA, and dry season end, DSE) among three common metrics used to define the dry season: P < P ̅, P < Ep, and P < E. We found that all three definitions show that dry seasons have lengthened in much of the tropics since 1979. Among the three definitions, P < E estimates the largest fraction (49.0%) of tropical land area likely experiencing longer dry seasons, followed by P < Ep (41.4%) and P < P ̅ (34.4%). The largest differences in multi-year mean DSL (> 120 days) among the three definitions occurred in the most arid and the most humid regions of the tropics. All definitions and datasets consistently showed longer dry seasons in southern Amazon (due to delayed DSE) and central Africa (due to both earlier DSA and delayed DSE). However, definitions that account for changing water demand estimated longer DSL extension over those two regions. These results indicate that warming-enhanced evapotranspiration exacerbates dry season lengthening and ecosystem water deficit. Thus, it is necessity to account for the evolving water demand of tropical ecosystems when characterizing changes in seasonal dry periods and ecosystem water deficits in an increasingly warmer and drier climate.


2017 ◽  
Vol 26 (3) ◽  
pp. 219 ◽  
Author(s):  
Philip E. Camp ◽  
Meg A. Krawchuk

Human-caused wildfires are controlled by human and natural influences, and determining their key drivers is critical for understanding spatial patterns of wildfire and implementing effective fire management. We examined an array of explanatory variables that account for spatial controls of human-caused fire occurrence from 1990 to 2013 among six ecosystem zones that vary in human footprint and environmental characteristics in British Columbia, Canada. We found that long-term patterns of human-caused fire in ecosystem zones with a larger human footprint were strongly controlled by biophysical variables explaining conditions conducive to burning, whereas fire occurrence in remote ecosystem zones was controlled by various metrics of human activity. A metric representing the wildland–urban interface was a key factor explaining human-caused fire occurrence regardless of ecosystem zone. Our results contribute to the growing body of research on the varying constraints of spatial patterns of fire occurrence by explicitly examining human-caused fire and the heterogeneity of constraints based on human development.


Sign in / Sign up

Export Citation Format

Share Document