Freezing impact on cone dehiscence, samara release and seed germination in Casuarina cunninghamiana (Casuarinaceae)

Botany ◽  
2021 ◽  
Author(s):  
Ian Timothy Riley ◽  
A. Hayriye Saygi

Abstract: Freezing, as a climatic extreme, can contribute to patterns of plant distribution and this might operate through impacts on mechanisms of seed release. Therefore, the impact of freezing on samara release and seed germination in infructescences (cones) of Casuarina cunninghamiana was assessed. Cones at field moisture content were frozen (22 h) and thawed (2 h) though 0 to 5 cycles. Freezing impaired cone dehiscence and samara release (<1% samaras released with ≥2 freezing cycles) and reduced germination from samaras frozen while still in the cone (30 to 50% loss in total germination with 1 to 5 freezing cycles, respectively). Seed germination from a sample of air dried samaras was only mildly impacted (10% drop in total germination with 5 freezing cycles). This vulnerability of C. cunninghamiana to freezing damage, particularly samara release, appears to be a novel finding for woody perennials with fruiting structures retained in the canopy during winter, and a potential contributory factor in species persistence and invasiveness.

2021 ◽  
Vol 13 (13) ◽  
pp. 2442
Author(s):  
Jichao Lv ◽  
Rui Zhang ◽  
Jinsheng Tu ◽  
Mingjie Liao ◽  
Jiatai Pang ◽  
...  

There are two problems with using global navigation satellite system-interferometric reflectometry (GNSS-IR) to retrieve the soil moisture content (SMC) from single-satellite data: the difference between the reflection regions, and the difficulty in circumventing the impact of seasonal vegetation growth on reflected microwave signals. This study presents a multivariate adaptive regression spline (MARS) SMC retrieval model based on integrated multi-satellite data on the impact of the vegetation moisture content (VMC). The normalized microwave reflection index (NMRI) calculated with the multipath effect is mapped to the normalized difference vegetation index (NDVI) to estimate and eliminate the impact of VMC. A MARS model for retrieving the SMC from multi-satellite data is established based on the phase shift. To examine its reliability, the MARS model was compared with a multiple linear regression (MLR) model, a backpropagation neural network (BPNN) model, and a support vector regression (SVR) model in terms of the retrieval accuracy with time-series observation data collected at a typical station. The MARS model proposed in this study effectively retrieved the SMC, with a correlation coefficient (R2) of 0.916 and a root-mean-square error (RMSE) of 0.021 cm3/cm3. The elimination of the vegetation impact led to 3.7%, 13.9%, 11.7%, and 16.6% increases in R2 and 31.3%, 79.7%, 49.0%, and 90.5% decreases in the RMSE for the SMC retrieved by the MLR, BPNN, SVR, and MARS model, respectively. The results demonstrated the feasibility of correcting the vegetation changes based on the multipath effect and the reliability of the MARS model in retrieving the SMC.


2021 ◽  
Vol 65 (1) ◽  
pp. 23-30
Author(s):  
Tiago Costa ◽  
Neslihan Akdeniz

HighlightsDesign characteristics for animal mortality compost cover materials were tested.Compressive stress was applied to simulate the effects of the mortalities on cover materials.The highest permeability was measured for sawdust at 25% moisture content.A linear relationship was found between the volumetric flow rate and the power required to aerate the piles.Abstract. Composting is an aerobic process that relies on natural aeration to maintain proper oxygen levels. Air-filled porosity, mechanical strength, and permeability are among the essential parameters used to optimize the process. This study’s objective was to measure the physical parameters and airflow characteristics of three commonly used cover materials at four moisture levels, which could be used in designing actively aerated swine mortality composting systems. A laboratory-scale experiment was conducted to measure pressure drops across the cover materials as a function of the airflow rate and the material’s moisture content. Compressive stress was applied for 48 h to simulate the impact of swine mortalities on the cover materials. The power required to aerate each material was determined as a function of volumetric flow rate and moisture content. As expected, air-filled porosity and permeability decreased with increasing bulk density and moisture content. The highest average permeability values were measured at 25% moisture content and ranged from 66 × 10-4 to 70 × 10-4 mm2, from 161 × 10-4 to 209 × 10-4 mm2, and from 481 × 10-4 to 586 × 10-4 mm2 for woodchips, ground cornstalks, and sawdust, respectively. For the range of airflow rates tested in this study (0.0025 to 0.0050 m3 s-1 m-2), a linear relationship (R2 = 0.975) was found between the volumetric flow rate (m3 s-1) and the power required to aerate the compost pile (W per 100 kg of swine mortality). Keywords: Airflow, Darcy’s law, Livestock, Modeling, Permeability, Pressure drop.


2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


1982 ◽  
Vol 62 (4) ◽  
pp. 1045-1048 ◽  
Author(s):  
N. D. G. WHITE ◽  
R. N. SINHA ◽  
W. E. MUIR

A rapid method of determining wheat seed germination after 1 day (G1) of incubation was found. Germination of wheat seed stored at [Formula: see text] moisture content is estimated by adding 12% to G1; at <17% moisture content germination is not consistently predicted by G1.


Weed Science ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Nadeem Iqbal ◽  
Sudheesh Manalil ◽  
Bhagirath S. Chauhan ◽  
Steve W. Adkins

AbstractSesbania [Sesbania cannabina(Retz.) Pers.] is a problematic emerging weed species in Australian cotton-farming systems. However, globally, no information is available regarding its seed germination biology, and better understanding will help in devising superior management strategies to prevent further infestations. Laboratory and glasshouse studies were conducted to evaluate the impact of various environmental factors such as light, temperature, salt, osmotic and pH stress, and burial depth on germination and emergence of two Australian biotypes ofS. cannabina. Freshly harvested seeds of both biotypes possessed physical dormancy. A boiling-water scarification treatment (100±2 C) of 5-min duration was the optimum treatment to overcome this dormancy. Once dormancy was broken, the Dalby biotype exhibited a greater germination (93%) compared with the St George biotype (87%). The nondormant seeds of both biotypes showed a neutral photoblastic response to light and dark conditions, with germination marginally improved (6%) under illumination. Maximum germination of both biotypes occurred under an alternating temperature regime of 30/20 and 35/25 C and under constant temperatures of 32 or 35 C, with no germination at 8 or 11 C. Seed germination of both biotypes decreased linearly from 87% to 14% with an increase in moisture stress from 0.0 to −0.8 MPa, with no germination possible at −1.0 MPa. There was a gradual decline in germination for both biotypes when imbibed in a range of salt solutions of 25 to 250 mM, with a 50% reduction in germination occurring at 150 mM. Both biotypes germinated well under a wide range of pH values (4.0 to 10.0), with maximum germination (94%) at pH 9.0. The greatest emergence rate of the Dalby (87%) and St George (78%) biotypes was recorded at a burial depth of 1.0 cm, with no emergence at 16.0 cm. Deep tillage seems to be the best management strategy to stopS. cannabina’s emergence and further infestation of cotton (Gossypium hirsutumL.) fields. The findings of this study will be helpful to cotton agronomists in devising effective, sustainable, and efficient integrated weed management strategies for the control ofS. cannabinain cotton cropping lands.


2015 ◽  
Vol 12 (1) ◽  
pp. 815-864
Author(s):  
A. Sakalli

Abstract. Plant migration is a well known adaptation strategy of plant groups or species with evidence from historical to present observation and monitoring studies. Importance of N2-fixing plants has increased in last decades. Alnus (alder) is an important plant group because of its nitrogen fixation ability. Alders are generally distributed in humid locations of boreal, temperate and tropical climate zones, where the nitrogen fixation is an important nitrogen source for other plants. To model the nitrogen fixation by alder, data about the global distribution of alder is absolutely required. In this study a new method and model are presented to predict the distribution of N2-fixing genus on global scale and its migration in the future by using climate change scenarios. Three linear functions were defined for the determination of climate niche of alders. The distribution and migration model (Alnus-Distribution-Model (ADM)) was improved with the aid of the soil units from FAO-Unesco Soil Database, and vegetation types from Schmithüsen's biogeographical atlas. The model was also developed to predict the impact of climate change on alder distribution by using climate data from experiments performed by the Community Climate System Model version 4 (CCSM4) including the representative concentration pathways (RCPs) mitigation scenarios, and extensions of the scenarios beyond 2100 to 2300. The model covered basic approaches to understand the combine effect of climate, soil and vegetation on plant distribution and migration in the current time and future.


2019 ◽  
Vol 2 (3) ◽  
pp. 7
Author(s):  
Dyah Priandini ◽  
Muhamad Rahmad Suhartanto ◽  
Abdul Qadir

Development of papaya fruit production is influenced by the availability of seed quality. High seed quality is maintained during seed storage. Estimation of vigor in relation to storability can be detected by accelerated aging test. This research aims to develop physicall accelerated aging test by, 1)determine the impact of physical accelerated aging on vigor and viability parameters on papaya seed variety Callina and Sukma, 2) determine the levels of seed moisture content and effective period of physicall accelerated aging to predict vigor of papaya seed. This research was conducted at the Laboratory of Seed Science and Technology and Green House Leuwikopo, Department of Agronomy and Horticulture, IPB in January-May 2016 using a randomized complete block design with three replications. Seeds aged by the aging equipment MPC IPB 77-1 MMM. The results showed that the aging time decreased germination value in papaya seed variety Callina and Sukma with equation y=-0.1389x3+3.3333x2–25.25x+81.5 and y=0.0171x3+0.2028x2-9.9956x+81.095. Effective imbibition is 96 hour with moisture content 63-70% in both varieties. The effective of aging time treatment at 0x4, 1x4, 2x4, 3x4, dan 4x4 minutes.Keywords:imbibition, moisture content, viability, vigor


2021 ◽  
Author(s):  
Shahab IbrahimPour ◽  
Alireza KhavaninZadeh ◽  
Ruhollah Taghizadeh mehrjardi ◽  
Hans De Boeck ◽  
Alvina Gul

Abstract Destructive mining operations are affecting large areas of natural ecosystems, especially in arid lands. The present study aims at investigating the impact of iron mine exploitation on vegetation and soil in Nodoushan (Yazd province, central Iran). Based on the dominant wind, topography, slope, vegetation and soil of the area, soil and vegetation parameters close to ​the mine were recorded and analyzed according to the distance from the mine. In order to obtain the vegetation cover, a transect and plot on the windward and leeward side of the mine, with 100 m intervals and three replicates at each sampling location was used, yielding 96 soil samples. The amount of dust on the vegetation, the seed weight and seed germination rate of Artemisia sp. as the dominant species within the area, and the soil microbial respiration were measured. The relationship between vegetation cover and distance from the mine was not linear, which was due to an interplay between pollution from the mine and local grazing, while other factors did increase or decrease linearly. The results showed that, as the distance from the mine increased, the weight of 1000 seeds of Artemisia sp. was significantly increased from 271 to 494 mg and seed germination rate and soil microbial respiration were significantly increased from 11.7 to 48.4 % and from 4.5 to 5.9 mg CO2 g− 1 soil day− 1 respectively, while the amount of dust significantly decreased from 43.5 to 6 mg (g plant)−1 between the distance of 100 to 600 m from the mine in the leeward direction. A similar trend was observed in the windward side, though negative effects were lower compared to the same distance along the leeward sample locations. The direct and indirect effects on plant growth and health from mining impacts generally decreased linearly with increasing distance from the mine, up to at least 600 m. Our study serves as a showcase for the potential of bio-indicators as a cost-effective method for assessing impacts of mining activities on the surrounding environment.


2017 ◽  
Vol 50 (4) ◽  
pp. 5-16
Author(s):  
F. Shahbazi

AbstractMechanical damage of seeds due to harvest, handling and other process is an important factor that affects the quality and quaintly of seeds. The objective of this research was to determine the effects of moisture content and the impact energy on the breakage susceptibility of vetch seeds. The experiments were conducted at moisture contents of 7.57 to 25% (wet basis) and at the impact energies of 0.1, 0.2 and 0.3 J, using an impact damage assessment device. The results showed that impact energy, moisture content, and the interaction effects of these two variables significantly influenced the percentage breakage in vetch seeds (p<0.01). Increasing the impact energy from 0.1 to 0.3 J caused a significant increase in the mean values of seeds breakage from 41.69 to 78.67%. It was found that the relation between vetch seeds moisture content and seeds breakage was non-linear, and the extent of damaged seeds decreased significantlyas a polynomial (from 92.47 to 33.56%) with increasing moisture (from 7.57 to 17.5%) and reached a minimum at moisture level of about 17.5%. Further increase in seed moisture, however, caused an increase in the amount of seeds breakage. Mathematical relationships composed of seed moisture content and impact energy, were developed for accurately description the percentage breakage of vetch seeds under impact loading. It was found that the models have provided satisfactory results over the whole set of values for the dependent variable.


Sign in / Sign up

Export Citation Format

Share Document