Long noncoding RNA MALAT1 participates in the pathological angiogenesis of diabetic retinopathy in an oxygen-induced retinopathy mouse model by sponging miR-203a-3p

2020 ◽  
Vol 98 (4) ◽  
pp. 219-227 ◽  
Author(s):  
Li Yu ◽  
Jinling Fu ◽  
Na Yu ◽  
Yazhen Wu ◽  
Ning Han

Diabetic retinopathy (DR) is a devastating complication of diabetes. The aim of the present study is to investigate the exact role and mechanism of long noncoding RNA MALAT1 (MALAT1) in the progress of DR. An oxygen-induced retinopathy (OIR) mouse model and high glucose (HG) stimulated human retinal microvascular endothelial cells (HRMECs) were employed to mimic the pathological statues of DR. Quantitative real-time PCR (qRT-PCR) and Western blot results showed that MALAT1, VEGFA, and HIF-1α levels were increased in DR retinal tissues and HG-stimulated HRMECs, whereas the expression of miR-203a-3p was decreased. Knockdown of MALAT1 or upregulation of miR-203a-3p both suppressed HG-induced proliferation, migration, and tube formation of HRMECs. A dual-luciferase reporter assay showed that miR-203a-3p could bind to the predicted seed regions of MALAT1 as evidenced by the reduced luciferase activity. Furthermore, enforced downregulation of miR-203a-3p abolished the suppressive effect of MALAT1 silencing on HRMEC cell migration and tube formation. In conclusion, these data demonstrated that MALAT1 may affect angiogenesis by sponging miR-203a-3p in DR, suggesting that MALAT1 may act as a novel therapeutic target for the treatment of DR.

Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


2021 ◽  
Vol 22 (4) ◽  
pp. 1882
Author(s):  
Abdelrahman M. Elsayed ◽  
Emine Bayraktar ◽  
Paola Amero ◽  
Salama A. Salama ◽  
Abdelaziz H. Abdelaziz ◽  
...  

Many long noncoding RNAs have been implicated in tumorigenesis and chemoresistance; however, the underlying mechanisms are not well understood. We investigated the role of PRKAR1B-AS2 long noncoding RNA in ovarian cancer (OC) and chemoresistance and identified potential downstream molecular circuitry underlying its action. Analysis of The Cancer Genome Atlas OC dataset, in vitro experiments, proteomic analysis, and a xenograft OC mouse model were implemented. Our findings indicated that overexpression of PRKAR1B-AS2 is negatively correlated with overall survival in OC patients. Furthermore, PRKAR1B-AS2 knockdown-attenuated proliferation, migration, and invasion of OC cells and ameliorated cisplatin and alpelisib resistance in vitro. In proteomic analysis, silencing PRKAR1B-AS2 markedly inhibited protein expression of PI3K-110α and abrogated the phosphorylation of PDK1, AKT, and mTOR, with no significant effect on PTEN. The RNA immunoprecipitation detected a physical interaction between PRKAR1B-AS2 and PI3K-110α. Moreover, PRKAR1B-AS2 knockdown by systemic administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with PRKAR1B-AS2–specific small interfering RNA enhanced cisplatin sensitivity in a xenograft OC mouse model. In conclusion, PRKAR1B-AS2 promotes tumor growth and confers chemoresistance by modulating the PI3K/AKT/mTOR pathway. Thus, targeting PRKAR1B-AS2 may represent a novel therapeutic approach for the treatment of OC patients.


2021 ◽  
pp. 1-11
Author(s):  
Jun Dong ◽  
Tingkai Fu ◽  
Yunxue Yang ◽  
Zhenxin Mu ◽  
Xingang Li

<b><i>Introduction:</i></b> Long noncoding RNA small nuclear host gene 1 (SNHG1) was involved in neuroinflammation in microglial BV-2 cells; however, its interaction with microRNA (miR)-181b in lipopolysaccharide (LPS)-induced BV-2 cells remained poor. <b><i>Methods:</i></b> BV-2 cells were treated with LPS and then were subjected to observation on morphology and immunofluorescence staining. After transfection, levels of inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were determined with enzyme-linked immunosorbent assay (ELISA). The potential binding sites between SNHG1 and miR-181b were confirmed using dual-luciferase reporter assay. Quantitative real-time polymerase chain reaction and Western blot were applied for detecting the mRNA and protein expressions of proinflammatory cytokines, ionized calcium-binding adapter molecule 1 (Iba1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). <b><i>Results:</i></b> LPS led to the morphological changes and activation of BV-2 cells. The transfection of SNHG1 overexpression vector further promoted LPS-induced SNHG1 upregulation, inflammatory cytokines (IL-1β, IL-6, and TNF-α) generation and Iba-1, COX-2, and iNOS expressions, whereas silencing SNHG1 did the opposite. miR-181b functions as a downstream miRNA of SNHG1. In LPS-treated cells, the inhibition of miR-181b induced by SNHG1 promoted inflammation response and the expressions of Iba-1, COX-2, and iNOS. <b><i>Conclusion:</i></b> SNHG1 was involved in LPS-induced microglial activation and inflammation response via targeting miR-181b, providing another evidence of the roles of SNHG1 implicated in neuroinflammation of microglia.


Endocrinology ◽  
2021 ◽  
Vol 162 (11) ◽  
Author(s):  
Tsai-Der Chuang ◽  
Derek Quintanilla ◽  
Drake Boos ◽  
Omid Khorram

Abstract The objective of this study was to determine the expression and functional role of a long noncoding RNA (lncRNA) MIAT (myocardial infarction–associated transcript) in leiomyoma pathogenesis. Leiomyoma compared with myometrium (n = 66) expressed significantly more MIAT that was independent of race/ethnicity and menstrual cycle phase but dependent on MED12 (mediator complex subunit 12) mutation status. Leiomyomas bearing the MED12 mutation expressed higher levels of MIAT and lower levels of microRNA 29 family (miR-29a, -b, and -c) compared with MED12 wild-type leiomyomas. Using luciferase reporter activity and RNA immunoprecipitation analysis, MIAT was shown to sponge the miR-29 family. In a 3-dimensional spheroid culture system, transient transfection of MIAT siRNA in leiomyoma smooth muscle cell (LSMC) spheroids resulted in upregulation of miR-29 family and downregulation of miR-29 targets, collagen type I (COL1A1), collagen type III (COL3A1), and TGF-β3 (transforming growth factor β-3). Treatment of LSMC spheroids with TGF-β3 induced COL1A1, COL3A1, and MIAT levels, but repressed miR-29 family expression. Knockdown of MIAT in LSMC spheroids blocked the effects of TGF-β3 on the induction of COL1A1 and COL3A1 expression. Collectively, these results underscore the physiological significance of MIAT in extracellular matrix accumulation in leiomyoma.


2019 ◽  
Vol 97 (4) ◽  
pp. 423-430 ◽  
Author(s):  
Shaoyang Shi ◽  
Yong Jin ◽  
Haishan Song ◽  
Xiaolong Chen

Pathological angiogenesis in the retina is one of the main ocular diseases closely associated with vision loss. This work investigated the roles of microRNA-34a (miR-34a) and its potential target Notch1, in retinal angiogenesis. For this we used oxygen-induced retinopathy (OIR) rats and human retinal microvascular endothelial cells (HRMECs) stimulated with vascular endothelial growth factor (VEGF). We performed hematoxylin–eosin staining, Western blot for VEGF, and immunofluorescence staining for CD31 to verify the establishment of our OIR model. We observed down-regulation of miR-34a, and up-regulation of Notch1 and Hey1 in retinas from OIR rats. We found similar results with the VEGF-stimulated HRMECs. By performing MTT assay, cell scratch assay, tube formation assay, and by detecting the expression of matrix-metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitors of metalloproteinases-1 (TIMP-1), and TIMP-2, we found that transfection of miR-34a ameliorated VEGF-mediated angiogenesis of HRMECs. We further observed that siRNA-induced gene silencing of Notch1 prevented VEGF-induced angiogenesis via regulating cell proliferation, cell migration, and tube formation of HRMECs. Additionally, activation of Notch1 by transfection of Notch1 plasmid attenuated the inhibitory effects of miR-34a on tube formation, in the present of VEGF. Results from our dual-luciferase reporter gene assay suggested that miR-34a targets Notch1. In summary, our data demonstrate that miR-34a attenuates retinal angiogenesis via targeting Notch1.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yuhua He ◽  
Shuifang Xu ◽  
Yi Qi ◽  
Jinfang Tian ◽  
Fengying Xu

Abstract Background Small nucleolar RNA host gene 25 (SNHG25), a long noncoding RNA, has been well-studied in epithelial ovarian cancer. However, the specific functions of SNHG25 in endometrial cancer (EC) have not been studied yet. In this study, we aimed to elucidate the clinical significance of SNHG25 in EC and determine the regulatory activity of SNHG25 on the tumor-associated EC phenotype. We also thoroughly explored the molecular mechanisms underlying SNHG25 function in EC. Methods Gene expression was measured using quantitative real-time polymerase chain reaction. The detailed functions of SNHG25 in EC were examined by performing loss-of-function experiments. Moreover, the regulatory mechanisms involving SNHG25, microRNA-497-5p, and fatty acid synthase (FASN) were unveiled using the luciferase reporter assay and RNA immunoprecipitation. Results We observed a high level of SNHG25 in EC using the TCGA dataset and our study cohort. Patients with a high SNHG25 level had shorter overall survival than those with a low SNHG25 level. SNHG25 deficiency resulted in tumor-repressing activities in EC cells by decreasing cell proliferation, migration, and invasion and promoting cell apoptosis. Furthermore, the function of SNHG25 depletion in impairing tumor growth in vivo was confirmed. SNHG25 sequestered miR-497-5p as a competing endogenous RNA in EC and consequently positively regulated FASN expression. Thus, the decrease in miR-497-5p or increase in FASN could neutralize the modulatory actions of SNHG25 knockdown in EC cells. Conclusions The depletion of SNHG25 impedes the oncogenicity of EC by targeting the miR-497-5p/FASN axis. The newly elucidated SNHG25/miR-497-5p/FASN pathway may be a promising target for the molecular-targeted management of EC.


2021 ◽  
pp. 1-9
Author(s):  
Miao Huo ◽  
Xingxing Zheng ◽  
Ning Bai ◽  
Ruifen Xu ◽  
Guang Yang ◽  
...  

<b><i>Introduction:</i></b> Neuropathic pain (NP) is one of the most severe chronic pain types. In recent years, more and more studies have shown that long noncoding RNA (LncRNA) plays a key role in a variety of human diseases, including NP. However, the role of LncRNA prostate cancer-associated transcript 19 (PCAT19) in NP and its specific mechanism remain unclear. <b><i>Methods:</i></b> A chronic constrictive injury (CCI) rat model was established. Rat paw withdrawal threshold and paw withdrawal latency were used to evaluate the neuronal pain behavior of rats in this model. mRNA expression of PCAT19, neuroinflammatory factor, microRNA (miR)-182-5p, and Jumonji domain containing 1A (JMJD1A) were detected by quantitative real-time PCR. ELISA analysis was used to detect inflammatory factor protein expression. Dual-luciferase reporter assay was used to evaluate the targeting relationship between genes. <b><i>Results:</i></b> PCAT19 was continuously upregulated in CCI rats. miR-182-5p was the target of PCAT19, and miR-182-5p was increased after PCAT19 knockdown. NP behaviors such as mechanical ectopic pain and thermal hyperalgesia as well as neuroinflammation can be reduced by knocking down PCAT19. However, the injection of miR-182-5p antagomir significantly reversed the level of the NP behaviors and neuroinflammation caused by PCAT19 knockdown. Besides, dual-luciferase reporter assay showed that JMJD1A was the target gene of miR-182-5p. The level of JMJD1A in CCI rats increased with time. After PCAT19 knockdown, JMJD1A was significantly decreased, but inhibition of miR-182-5p can reverse its levels. <b><i>Conclusion:</i></b> This study shows that PCAT19 plays a role in NP by targeting the miR-182-5p/JMJD1A axis, and PCAT19 can be used as a new therapeutic target for NP.


2021 ◽  
Vol 202 ◽  
pp. 108300
Author(s):  
Xinyang Yu ◽  
Xuefei Ma ◽  
Wenjian Lin ◽  
Qian Xu ◽  
Huanran Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document