scholarly journals The variations of Endophilin A2-FoxO3a-autophagy signal in AngⅡ-induced dopaminergic neuron injury mouse model and By Biochanin A

Author(s):  
Yi-Gui Yu ◽  
Jun-Hui Han ◽  
Hai-Xia Xue ◽  
Weizu Li ◽  
Wen-Ning Wu ◽  
...  

Biochanin A is a natural plant estrogen, with various biological activities such as anti-apoptosis, anti-oxidation and suppression of inflammatory. In this study, we investigated the protective effects of biochanin A on AngⅡ-induced dopaminergic neurons damage in vivo and molecular mechanisms. Spontaneous activity and motor ability of mice among groups was detected by open-field test and swim-test. The expression of TH, LC3BⅡ/LC3BⅠ, Beclin-1, P62, p-FoxO3a / FoxO3a, FoxO3 and Endophilin A2 were determined by western blot and immunohistochemistry or immunofluorescence staining. Our results showed that AngⅡ treatment significantly increased the behavioral dysfunction of mice and DA neurons damage. Meanwhile, AngⅡ treatment increased the expression of LC3BⅡ/LC3BⅠ, Beclin-1, P62 and FoxO3a and decreased the expression of Endophilin A2 and p-FoxO3a / FoxO3a, however, biochanin A treatment alleviate these changes. In summary, these results suggest that biochanin A exerts protective effects on AngⅡ-induced mouse model may be related to regulating Endophilin A2, FoxO3a and autophagy-related proteins. However, the specific mechanism is not yet clear and needs further study.

2020 ◽  
Vol 27 (12) ◽  
pp. 1955-1996 ◽  
Author(s):  
Antonio Speciale ◽  
Antonella Saija ◽  
Romina Bashllari ◽  
Maria Sofia Molonia ◽  
Claudia Muscarà ◽  
...  

: Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed. : This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Wenhui Mo ◽  
Chengfen Wang ◽  
Jingjing Li ◽  
Kan Chen ◽  
Yujing Xia ◽  
...  

Objective. Fucosterol is derived from the brown alga Eisenia bicyclis and has various biological activities, including antioxidant, anticancer, and antidiabetic properties. The aim of this study was to investigate the protective effects of fucosterol pretreatment on Concanavalin A- (ConA-) induced acute liver injury in mice, and to understand its molecular mechanisms. Materials and Methods. Acute liver injury was induced in BALB/c mice by ConA (25 mg/kg), and fucosterol (dissolved in 2% DMSO) was orally administered daily at doses of 25, 50, and 100 mg/kg. The levels of hepatic necrosis, apoptosis, and autophagy associated with inflammatory cytokines were measured at 2, 8, and 24 h. Results. Fucosterol attenuated serum liver enzyme levels and hepatic necrosis and apoptosis induced by TNF-α, IL-6, and IL-1β. Fucosterol also inhibited apoptosis and autophagy by upregulating Bcl-2, which decreased levels of functional Bax and Beclin-1. Furthermore, reduced P38 MAPK and NF-κB signaling were accompanied by PPARγ activation. Conclusion. This study showed that fucosterol could alleviate acute liver injury induced by ConA by inhibiting P38 MAPK/PPARγ/NF-κB signaling. These findings highlight that fucosterol is a promising potential therapeutic agent for acute liver injury.


2018 ◽  
Author(s):  
Maayan Barnea ◽  
Merle Stein ◽  
Sabina Winograd-Katz ◽  
Moran Shalev ◽  
Esther Arman ◽  
...  

SummaryThe molecular mechanisms that regulate fusion of monocytes into functional osteoclasts are virtually unknown. We describe a knock-in mouse model for the R51Q mutation in sorting nexin 10 (SNX10) that exhibits osteopetrosis and related symptoms of patients of autosomal recessive osteopetrosis linked to this mutation. Osteopetrosis arises in homozygous R51Q SNX10 mice due to a unique combination of reduced numbers of osteoclasts that are non-functional. Fusion of mutant monocytes is deregulated and occurs rapidly and continuously to form giant, non-functional osteoclasts. Mutant osteoclasts mature quickly and survive poorly in vitro, possibly accounting for their scarcity in vivo. These cells also exhibit impaired ruffled borders, which are required for bone resorption, providing an additional basis for the osteopetrotic phenotype. More broadly, we propose that the maximal size of osteoclasts is actively determined by a genetically-regulated, cell-autonomous mechanism that limits precursor cell fusion, and for which SNX10 is required.


2018 ◽  
Vol 1 ◽  
Author(s):  
Kazuo Miyashita ◽  
Masashi Hosokawa

Marine organisms produce a variety of carotenoids with unique functional groups such as allene, acetylene, acetyl, and hydroxymethyl. Astaxanthin and fucoxanthin are representative marine carotenoids on which numerous studies have been performed. Due to the characteristic conjugated polyene chain and terminal ring structures, both carotenoids can act as strong antioxidants. Major nutritional effects of astaxanthin, such as cardio-, skin-, and ocular-protective effects, are based on its in vivo antioxidant activity. However, the antioxidant activity of fucoxanthin is not largely involved in its characteristic nutritional activity and anti-obesity and anti-diabetic effects. The major molecular mechanisms of both effects involve modulating the expression of related genes and proteins by fucoxanthin metabolites.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Sanjeewa A Goonasekera ◽  
Jop van Berlo ◽  
Adam R Burr ◽  
Robert N Correll ◽  
Allen J York ◽  
...  

Background: STIM1, an ER/SR resident Ca 2+ sensing protein regulates Ca 2+ entry following internal Ca 2+ store depletion in a broad range of tissues and cell types. However their putative roles in excitable tissue such as cardiac myocytes is uncertain. Results: Here we generated a mouse model of STIM1 overexpression in cardiac and skeletal muscle. Western blot analysis suggested approximately 4-6 fold STIM1 overexpression in Tg mouse hearts compared to Ntg littermates. Immunocytochemistry carried out in ventricular myocytes revealed that STIM1 and the cardiac ryanodine receptor (RyR2) co-localize. Functionally, the amplitude of Ca 2+ entry following SR Ca 2+ depletion was 2-fold greater in myocytes isolated from STIM1 Tg mice compared to NTg littermates. Echocardiographic analysis in STIM1 Tg mice showed age dependent remodeling of the myocardium with a significant decrease in fractional shortening at 16 weeks of age (14.4.5±3.8 in STIM1 Tg vs. 36.9±1.5 in Ntg). These changes were accompanied by a significant increase in heart weight to tibia length (13.6 +/- 1.4 vs 6.5 +/- 0.24) and increased lung weight to tibia length ratio (11.6+/- 2.1 vs 8.1 +/- 0.38) in STIM1 Tg mice compared to Ntg littermates. Photometry experiments in isolated ventricular myocytes demonstrated significantly increased Ca 2+ transient amplitude with an unexpected decrease in the SR Ca 2+ load associated with STIM1 overexpression. In addition transgenic mice showed increased calcineurin-nuclear factor of activated T cells (NFAT) activation in vivo, increased CaMKII activity, interstitial fibrosis and exaggerated hypertrophy following two weeks of neuroendocrine agonist or pressure overload stimulation. Conclusion: Our observations suggest that STIM1 overexpression by itself can lead to cardiac hypertrophy and contribute to pathological cardiac remodeling and possibly sudden cardiac death. The molecular mechanisms underlying these phenomena are currently under investigation.


2018 ◽  
Vol 13 (1) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Wonhwa Lee ◽  
Yuri Lee ◽  
Jaehong Kim ◽  
Jong-Sup Bae

Pelargonidin (PEL) is a well-known red pigment found in plants and has important biological activities that are potentially beneficial for human health. The aim of this study was to investigate the effect of PEL on lipopolysaccharide (LPS)-induced liver failure in mice, and to elucidate its underlying molecular mechanisms. Liver failure was induced by LPS (15 mg/kg, i.p) in mice, and 12 h later, they were treated intravenously with PEL. Administration of LPS significantly increased mortality, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and inflammatory cytokines, and expression of toll-like receptor 4 (TLR4) protein; PEL treatment effectively countered these effects of LPS. Further, LPS treatment markedly increased the expression of myeloid differentiation primary response gene 88 (MyD88), phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), and expressions of nuclear proteins, such as nuclear factor (NF)-κB and phosphorylated c-Jun. Additionally, LPS increased the serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6. All these effects of LPS were attenuated by PEL. In addition, the LPS-mediated increase in the level of serum interferon (IFN)-β expression of the TLR-associated activator of IFN (TRIF) protein, and phosphorylation of IFN regulator factor 3 (IRF3) were reduced by PEL. Our results suggest that PEL attenuates LPS-induced liver damage by inhibition of the TLR-mediated inflammatory pathway and could be used to treat liver diseases.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1353
Author(s):  
Ji Hyun Kim ◽  
Sanghyun Lee ◽  
Eun Ju Cho

Obesity increases risk of Alzheimer’s Disease (AD). A high fat diet (HFD) can lead to amyloidosis and amyloid beta (Aβ) accumulation, which are hallmarks of AD. In this study, protective effects of the ethyl acetate fraction of Acer okamotoanum (EAO) and isoquercitrin were evaluated on obesity and amyloidosis in the HFD- and Aβ-induced mouse model. To induce obesity and AD by HFD and Aβ, mice were provided with HFD for 10 weeks and were intracerebroventricularly injected with Aβ25–35. For four weeks, 100 and 10 mg/kg/day of EAO and isoquercitrin, respectively, were administered orally. Administration of EAO and isoquercitrin significantly decreased body weight in HFD and Aβ-injected mice. Additionally, EAO- and isoquercitrin-administered groups attenuated abnormal adipokines release via a decrease in leptin and an increase in adiponectin levels compared with the control group. Furthermore, HFD and Aβ-injected mice had damaged liver tissues, but EAO- and isoquercitrin-administered groups attenuated liver damage. Moreover, administration of EAO and isoquercitrin groups down-regulated amyloidosis-related proteins in the brain such as β-secretase, presenilin (PS)-1 and PS-2 compared with HFD and Aβ-injected mice. This study indicated that EAO and isoquercitrin attenuated HFD and Aβ-induced obesity and amyloidosis, suggesting that they could be effective in preventing and treating both obesity and AD.


2018 ◽  
Vol 19 (10) ◽  
pp. 3270 ◽  
Author(s):  
Yasuyoshi Miyata ◽  
Hideki Sakai

Royal jelly (RJ) is a glandular secretion produced by worker honeybees and is a special food for the queen honeybee. It results in a significant prolongation of the lifespan of the queen honeybee compared with the worker honeybees through anti-inflammatory, anti-oxidant and anti-microbial activities. Consequently, RJ is used as cosmetic and dietary supplement throughout the world. In addition, in vitro studies and animal experiments have demonstrated that RJ inhibits cell proliferation and stimulates apoptosis in various types of malignant cells and affects the production of various chemokines, anti-oxidants and growth factors and the expression of cancer-related molecules in patients with malignancies, especially in patients treated with anti-cancer agents. Therefore, RJ is thought to exert anti-cancer effects on tumor growth and exhibit protective functions against drug-induced toxicities. RJ has also been demonstrated to be useful for suppression of adverse events, the maintenance of the quality of life during treatment and the improvement of prognosis in animal models and patients with malignancies. To understand the mechanisms of the beneficial effects of RJ, knowledge of the changes induced at the molecular level by RJ with respect to cell survival, inflammation, oxidative stress and other cancer-related factors is essential. In addition, the effects of combination therapies of RJ and other anti-cancer agents or natural compounds are important to determine the future direction of RJ-based treatment strategies. Therefore, in this review, we have covered the following five issues: (1) the anti-cancer effects of RJ and its main component, 10-hydroxy-2-decenoic acid; (2) the protective effects of RJ against anti-cancer agent-induced toxicities; (3) the molecular mechanisms of such beneficial effects of RJ; (4) the safety and toxicity of RJ; and (5) the future directions of RJ-based treatment strategies, with a discussion on the limitations of the study of the biological activities of RJ.


2019 ◽  
Vol 47 (01) ◽  
pp. 119-133 ◽  
Author(s):  
Wonhwa Lee ◽  
Soo-Hyun Cho ◽  
Ji-Eun Kim ◽  
Changhun Lee ◽  
Jee-Hyun Lee ◽  
...  

High mobility group box 1 (HMGB1) is considered as a late mediator of sepsis and the inhibition of HMGB1-mediated severe inflammatory responses, and restoration of endothelial integrity have emerged as attractive therapeutic strategies for the management of sepsis. Ginsenoside Rh1, a protopanaxatriol type ginsenoside, is one of the major bioactive components of Korean red ginseng, which has been increasingly used for enhancing cognition and physical health worldwide. Ginsenoside Rh1 exhibits potent biological activities such as antistress, anti-oxidant, anti-inflammatory and immunomodulatory effects. We examined the effects of ginsenoside Rh1 on HMGB1-mediated septic responses and survival rate in a mouse model of sepsis. Ginsenoside-Rh1 was administered after the HMGB1 challenge. The antiseptic activity of ginsenoside Rh1 was determined by measuring the permeability, leukocyte adhesion and migration, activation of pro-inflammatory proteins in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and mice, and the survival rate in a sepsis mouse model. Ginsenoside Rh1 significantly reduced HMGB1 release in lipopolysaccharide (LPS)-activated HUVECs. Furthermore, ginsenoside Rh1 suppressed the production of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-6, activation of nuclear factor (NF)-[Formula: see text]B and extracellular signal-regulated kinase (ERK) 1/2 by HMGB1. Ginsenoside Rh1 also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with ginsenoside Rh1 reduced the cecal ligation and puncture (CLP)-induced release of HMGB1, sepsis-related mortality and tissue injury in vivo. Our results indicated that ginsenoside Rh1 might be useful in the treatment of sepsis by targeting HMGB1.


Sign in / Sign up

Export Citation Format

Share Document